Abstract:Sampling from unnormalized target distributions, e.g. Boltzmann distributions $\mu_{\text{target}}(x) \propto \exp(-E(x)/T)$, is fundamental to many scientific applications yet computationally challenging due to complex, high-dimensional energy landscapes. Existing approaches applying modern generative models to Boltzmann distributions either require large datasets of samples drawn from the target distribution or, when using only energy evaluations for training, cannot efficiently leverage the expressivity of advanced architectures like continuous normalizing flows that have shown promise for molecular sampling. To address these shortcomings, we introduce Energy-Weighted Flow Matching (EWFM), a novel training objective enabling continuous normalizing flows to model Boltzmann distributions using only energy function evaluations. Our objective reformulates conditional flow matching via importance sampling, allowing training with samples from arbitrary proposal distributions. Based on this objective, we develop two algorithms: iterative EWFM (iEWFM), which progressively refines proposals through iterative training, and annealed EWFM (aEWFM), which additionally incorporates temperature annealing for challenging energy landscapes. On benchmark systems, including challenging 55-particle Lennard-Jones clusters, our algorithms demonstrate sample quality competitive with state-of-the-art energy-only methods while requiring up to three orders of magnitude fewer energy evaluations.
Abstract:AI tasks in the car interior like identifying and localizing externally introduced objects is crucial for response quality of personal assistants. However, computational resources of on-board systems remain highly constrained, restricting the deployment of such solutions directly within the vehicle. To address this limitation, we propose the novel Object Detection and Localization (ODAL) framework for interior scene understanding. Our approach leverages vision foundation models through a distributed architecture, splitting computational tasks between on-board and cloud. This design overcomes the resource constraints of running foundation models directly in the car. To benchmark model performance, we introduce ODALbench, a new metric for comprehensive assessment of detection and localization.Our analysis demonstrates the framework's potential to establish new standards in this domain. We compare the state-of-the-art GPT-4o vision foundation model with the lightweight LLaVA 1.5 7B model and explore how fine-tuning enhances the lightweight models performance. Remarkably, our fine-tuned ODAL-LLaVA model achieves an ODAL$_{score}$ of 89%, representing a 71% improvement over its baseline performance and outperforming GPT-4o by nearly 20%. Furthermore, the fine-tuned model maintains high detection accuracy while significantly reducing hallucinations, achieving an ODAL$_{SNR}$ three times higher than GPT-4o.
Abstract:Latent space interpolations are a powerful tool for navigating deep generative models in applied settings. An example is single-cell RNA sequencing, where existing methods model cellular state transitions as latent space interpolations with variational autoencoders, often assuming linear shifts and Euclidean geometry. However, unless explicitly enforced, linear interpolations in the latent space may not correspond to geodesic paths on the data manifold, limiting methods that assume Euclidean geometry in the data representations. We introduce FlatVI, a novel training framework that regularises the latent manifold of discrete-likelihood variational autoencoders towards Euclidean geometry, specifically tailored for modelling single-cell count data. By encouraging straight lines in the latent space to approximate geodesic interpolations on the decoded single-cell manifold, FlatVI enhances compatibility with downstream approaches that assume Euclidean latent geometry. Experiments on synthetic data support the theoretical soundness of our approach, while applications to time-resolved single-cell RNA sequencing data demonstrate improved trajectory reconstruction and manifold interpolation.
Abstract:Training advanced machine learning models demands massive datasets, resulting in prohibitive computational costs. To address this challenge, data pruning techniques identify and remove redundant training samples while preserving model performance. Yet, existing pruning techniques predominantly require a full initial training pass to identify removable samples, negating any efficiency benefits for single training runs. To overcome this limitation, we introduce a novel importance score extrapolation framework that requires training on only a small subset of data. We present two initial approaches in this framework - k-nearest neighbors and graph neural networks - to accurately predict sample importance for the entire dataset using patterns learned from this minimal subset. We demonstrate the effectiveness of our approach for 2 state-of-the-art pruning methods (Dynamic Uncertainty and TDDS), 4 different datasets (CIFAR-10, CIFAR-100, Places-365, and ImageNet), and 3 training paradigms (supervised, unsupervised, and adversarial). Our results indicate that score extrapolation is a promising direction to scale expensive score calculation methods, such as pruning, data attribution, or other tasks.
Abstract:State space models are emerging as a dominant model class for sequence problems with many relying on the HiPPO framework to initialize their dynamics. However, HiPPO fundamentally assumes data to be noise-free; an assumption often violated in practice. We extend the HiPPO theory with measurement noise and derive an uncertainty-aware initialization for state space model dynamics. In our analysis, we interpret HiPPO as a linear stochastic control problem where the data enters as a noise-free control signal. We then reformulate the problem so that the data become noisy outputs of a latent system and arrive at an alternative dynamics initialization that infers the posterior of this latent system from the data without increasing runtime. Our experiments show that our initialization improves the resistance of state-space models to noise both at training and inference time. Find our implementation at https://cs.cit.tum.de/daml/unhippo.
Abstract:While uncertainty estimation for graphs recently gained traction, most methods rely on homophily and deteriorate in heterophilic settings. We address this by analyzing message passing neural networks from an information-theoretic perspective and developing a suitable analog to data processing inequality to quantify information throughout the model's layers. In contrast to non-graph domains, information about the node-level prediction target can increase with model depth if a node's features are semantically different from its neighbors. Therefore, on heterophilic graphs, the latent embeddings of an MPNN each provide different information about the data distribution - different from homophilic settings. This reveals that considering all node representations simultaneously is a key design principle for epistemic uncertainty estimation on graphs beyond homophily. We empirically confirm this with a simple post-hoc density estimator on the joint node embedding space that provides state-of-the-art uncertainty on heterophilic graphs. At the same time, it matches prior work on homophilic graphs without explicitly exploiting homophily through post-processing.
Abstract:Building generative models for relational databases (RDBs) is important for applications like privacy-preserving data release and augmenting real datasets. However, most prior work either focuses on single-table generation or relies on autoregressive factorizations that impose a fixed table order and generate tables sequentially. This approach limits parallelism, restricts flexibility in downstream applications like missing value imputation, and compounds errors due to commonly made conditional independence assumptions. We propose a fundamentally different approach: jointly modeling all tables in an RDB without imposing any order. By using a natural graph representation of RDBs, we propose the Graph-Conditional Relational Diffusion Model (GRDM). GRDM leverages a graph neural network to jointly denoise row attributes and capture complex inter-table dependencies. Extensive experiments on six real-world RDBs demonstrate that our approach substantially outperforms autoregressive baselines in modeling multi-hop inter-table correlations and achieves state-of-the-art performance on single-table fidelity metrics.
Abstract:Existing time series tokenization methods predominantly encode a constant number of samples into individual tokens. This inflexible approach can generate excessive tokens for even simple patterns like extended constant values, resulting in substantial computational overhead. Inspired by the success of byte pair encoding, we propose the first pattern-centric tokenization scheme for time series analysis. Based on a discrete vocabulary of frequent motifs, our method merges samples with underlying patterns into tokens, compressing time series adaptively. Exploiting our finite set of motifs and the continuous properties of time series, we further introduce conditional decoding as a lightweight yet powerful post-hoc optimization method, which requires no gradient computation and adds no computational overhead. On recent time series foundation models, our motif-based tokenization improves forecasting performance by 36% and boosts efficiency by 1990% on average. Conditional decoding further reduces MSE by up to 44%. In an extensive analysis, we demonstrate the adaptiveness of our tokenization to diverse temporal patterns, its generalization to unseen data, and its meaningful token representations capturing distinct time series properties, including statistical moments and trends.
Abstract:Deep learning-based antimicrobial peptide (AMP) discovery faces critical challenges such as low experimental hit rates as well as the need for nuanced controllability and efficient modeling of peptide properties. To address these challenges, we introduce OmegAMP, a framework that leverages a diffusion-based generative model with efficient low-dimensional embeddings, precise controllability mechanisms, and novel classifiers with drastically reduced false positive rates for candidate filtering. OmegAMP enables the targeted generation of AMPs with specific physicochemical properties, activity profiles, and species-specific effectiveness. Moreover, it maximizes sample diversity while ensuring faithfulness to the underlying data distribution during generation. We demonstrate that OmegAMP achieves state-of-the-art performance across all stages of the AMP discovery pipeline, significantly advancing the potential of computational frameworks in combating antimicrobial resistance.
Abstract:We present finite-range embeddings (FiRE), a novel wave function ansatz for accurate large-scale ab-initio electronic structure calculations. Compared to contemporary neural-network wave functions, FiRE reduces the asymptotic complexity of neural-network variational Monte Carlo (NN-VMC) by $\sim n_\text{el}$, the number of electrons. By restricting electron-electron interactions within the neural network, FiRE accelerates all key operations -- sampling, pseudopotentials, and Laplacian computations -- resulting in a real-world $10\times$ acceleration in now-feasible 180-electron calculations. We validate our method's accuracy on various challenging systems, including biochemical compounds, conjugated hydrocarbons, and organometallic compounds. On these systems, FiRE's energies are consistently within chemical accuracy of the most reliable data, including experiments, even in cases where high-accuracy methods such as CCSD(T), AFQMC, or contemporary NN-VMC fall short. With these improvements in both runtime and accuracy, FiRE represents a new `gold-standard' method for fast and accurate large-scale ab-initio calculations, potentially enabling new computational studies in fields like quantum chemistry, solid-state physics, and material design.