Abstract:An unintended consequence of the vast pretraining of Large Language Models (LLMs) is the verbatim memorization of fragments of their training data, which may contain sensitive or copyrighted information. In recent years, unlearning has emerged as a solution to effectively remove sensitive knowledge from models after training. Yet, recent work has shown that supposedly deleted information can still be extracted by malicious actors through various attacks. Still, current attacks retrieve sets of possible candidate generations and are unable to pinpoint the output that contains the actual target information. We propose activation steering as a method for exact information retrieval from unlearned LLMs. We introduce a novel approach to generating steering vectors, named Anonymized Activation Steering. Additionally, we develop a simple word frequency method to pinpoint the correct answer among a set of candidates when retrieving unlearned information. Our evaluation across multiple unlearning techniques and datasets demonstrates that activation steering successfully recovers general knowledge (e.g., widely known fictional characters) while revealing limitations in retrieving specific information (e.g., details about non-public individuals). Overall, our results demonstrate that exact information retrieval from unlearned models is possible, highlighting a severe vulnerability of current unlearning techniques.
Abstract:Comprehensive evaluation of Large Language Models (LLMs) is an open research problem. Existing evaluations rely on deterministic point estimates generated via greedy decoding. However, we find that deterministic evaluations fail to capture the whole output distribution of a model, yielding inaccurate estimations of model capabilities. This is particularly problematic in critical contexts such as unlearning and alignment, where precise model evaluations are crucial. To remedy this, we introduce the first formal probabilistic evaluation framework in LLMs. Namely, we derive novel metrics with high-probability guarantees concerning the output distribution of a model. Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment. Through a case study focused on unlearning, we reveal that deterministic evaluations falsely indicate successful unlearning, whereas our probabilistic evaluations demonstrate that most if not all of the supposedly unlearned information remains accessible in these models. Additionally, we propose a novel unlearning loss based on entropy optimization and adaptive temperature scaling, which significantly improves unlearning in probabilistic settings on recent benchmarks. Our proposed shift from point estimates to probabilistic evaluations of output distributions represents an important step toward comprehensive evaluations of LLMs. https://github.com/yascho/probabilistic-unlearning
Abstract:Recent advancements in generative modeling, particularly diffusion models, have opened new directions for time series modeling, achieving state-of-the-art performance in forecasting and synthesis. However, the reliance of diffusion-based models on a simple, fixed prior complicates the generative process since the data and prior distributions differ significantly. We introduce TSFlow, a conditional flow matching (CFM) model for time series that simplifies the generative problem by combining Gaussian processes, optimal transport paths, and data-dependent prior distributions. By incorporating (conditional) Gaussian processes, TSFlow aligns the prior distribution more closely with the temporal structure of the data, enhancing both unconditional and conditional generation. Furthermore, we propose conditional prior sampling to enable probabilistic forecasting with an unconditionally trained model. In our experimental evaluation on eight real-world datasets, we demonstrate the generative capabilities of TSFlow, producing high-quality unconditional samples. Finally, we show that both conditionally and unconditionally trained models achieve competitive results in forecasting benchmarks, surpassing other methods on 6 out of 8 datasets.
Abstract:Understanding human attention is crucial for vision science and AI. While many models exist for free-viewing, less is known about task-driven image exploration. To address this, we introduce CapMIT1003, a dataset with captions and click-contingent image explorations, to study human attention during the captioning task. We also present NevaClip, a zero-shot method for predicting visual scanpaths by combining CLIP models with NeVA algorithms. NevaClip generates fixations to align the representations of foveated visual stimuli and captions. The simulated scanpaths outperform existing human attention models in plausibility for captioning and free-viewing tasks. This research enhances the understanding of human attention and advances scanpath prediction models.
Abstract:Existing studies have shown that Graph Neural Networks (GNNs) are vulnerable to adversarial attacks. Even though Graph Transformers (GTs) surpassed Message-Passing GNNs on several benchmarks, their adversarial robustness properties are unexplored. However, attacking GTs is challenging due to their Positional Encodings (PEs) and special attention mechanisms which can be difficult to differentiate. We overcome these challenges by targeting three representative architectures based on (1) random-walk PEs, (2) pair-wise-shortest-path PEs, and (3) spectral PEs - and propose the first adaptive attacks for GTs. We leverage our attacks to evaluate robustness to (a) structure perturbations on node classification; and (b) node injection attacks for (fake-news) graph classification. Our evaluation reveals that they can be catastrophically fragile and underlines our work's importance and the necessity for adaptive attacks.
Abstract:Their vulnerability to small, imperceptible attacks limits the adoption of deep learning models to real-world systems. Adversarial training has proven to be one of the most promising strategies against these attacks, at the expense of a substantial increase in training time. With the ongoing trend of integrating large-scale synthetic data this is only expected to increase even further. Thus, the need for data-centric approaches that reduce the number of training samples while maintaining accuracy and robustness arises. While data pruning and active learning are prominent research topics in deep learning, they are as of now largely unexplored in the adversarial training literature. We address this gap and propose a new data pruning strategy based on extrapolating data importance scores from a small set of data to a larger set. In an empirical evaluation, we demonstrate that extrapolation-based pruning can efficiently reduce dataset size while maintaining robustness.
Abstract:Transformer architectures have shown promising results in time series processing. However, despite recent advances in subquadratic attention mechanisms or state-space models, processing very long sequences still imposes significant computational requirements. Token merging, which involves replacing multiple tokens with a single one calculated as their linear combination, has shown to considerably improve the throughput of vision transformer architectures while maintaining accuracy. In this work, we go beyond computer vision and perform the first investigations of token merging in time series analysis on both time series transformers and state-space models. To effectively scale token merging to long sequences, we introduce local merging, a domain-specific token merging algorithm that selectively combines tokens within a local neighborhood, adjusting the computational complexity from linear to quadratic based on the neighborhood size. Our comprehensive empirical evaluation demonstrates that token merging offers substantial computational benefits with minimal impact on accuracy across various models and datasets. On the recently proposed Chronos foundation model, we achieve accelerations up to 5400% with only minor accuracy degradations.
Abstract:Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial training has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Abstract:When applying deep learning models in open-world scenarios, active learning (AL) strategies are crucial for identifying label candidates from a nearly infinite amount of unlabeled data. In this context, robust out-of-distribution (OOD) detection mechanisms are essential for handling data outside the target distribution of the application. However, current works investigate both problems separately. In this work, we introduce SISOM as the first unified solution for both AL and OOD detection. By leveraging feature space distance metrics SISOM combines the strengths of the currently independent tasks to solve both effectively. We conduct extensive experiments showing the problems arising when migrating between both tasks. In these evaluations SISOM underlined its effectiveness by achieving first place in two of the widely used OpenOOD benchmarks and second place in the remaining one. In AL, SISOM outperforms others and delivers top-1 performance in three benchmarks
Abstract:Current research in adversarial robustness of LLMs focuses on discrete input manipulations in the natural language space, which can be directly transferred to closed-source models. However, this approach neglects the steady progression of open-source models. As open-source models advance in capability, ensuring their safety also becomes increasingly imperative. Yet, attacks tailored to open-source LLMs that exploit full model access remain largely unexplored. We address this research gap and propose the embedding space attack, which directly attacks the continuous embedding representation of input tokens. We find that embedding space attacks circumvent model alignments and trigger harmful behaviors more efficiently than discrete attacks or model fine-tuning. Furthermore, we present a novel threat model in the context of unlearning and show that embedding space attacks can extract supposedly deleted information from unlearned LLMs across multiple datasets and models. Our findings highlight embedding space attacks as an important threat model in open-source LLMs. Trigger Warning: the appendix contains LLM-generated text with violence and harassment.