Abstract:In this paper, we argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise, such as small datasets, methodological inconsistencies, and unreliable evaluation setups. This can, at times, make it impossible to evaluate and compare attacks and defenses fairly, thereby slowing progress. We systematically analyze the LLM safety evaluation pipeline, covering dataset curation, optimization strategies for automated red-teaming, response generation, and response evaluation using LLM judges. At each stage, we identify key issues and highlight their practical impact. We also propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers. Lastly, we offer an opposing perspective, highlighting practical reasons for existing limitations. We believe that addressing the outlined problems in future research will improve the field's ability to generate easily comparable results and make measurable progress.
Abstract:As the data demand for deep learning models increases, active learning (AL) becomes essential to strategically select samples for labeling, which maximizes data efficiency and reduces training costs. Real-world scenarios necessitate the consideration of incomplete data knowledge within AL. Prior works address handling out-of-distribution (OOD) data, while another research direction has focused on category discovery. However, a combined analysis of real-world considerations combining AL with out-of-distribution data and category discovery remains unexplored. To address this gap, we propose Joint Out-of-distribution filtering and data Discovery Active learning (Joda) , to uniquely address both challenges simultaneously by filtering out OOD data before selecting candidates for labeling. In contrast to previous methods, we deeply entangle the training procedure with filter and selection to construct a common feature space that aligns known and novel categories while separating OOD samples. Unlike previous works, Joda is highly efficient and completely omits auxiliary models and training access to the unlabeled pool for filtering or selection. In extensive experiments on 18 configurations and 3 metrics, \ours{} consistently achieves the highest accuracy with the best class discovery to OOD filtering balance compared to state-of-the-art competitor approaches.
Abstract:Most safety training methods for large language models (LLMs) based on fine-tuning rely on dramatically changing the output distribution of the model when faced with a harmful request, shifting it from an unsafe answer to a refusal to respond. These methods inherently compromise model capabilities and might make auto-regressive models vulnerable to attacks that make likely an initial token of affirmative response. To avoid that, we propose to expand the model's vocabulary with a special token we call red flag token (<rf>) and propose to fine-tune the model to generate this token at any time harmful content is generated or about to be generated. This novel safety training method effectively augments LLMs into generative classifiers of harmfulness at all times during the conversation. This method offers several advantages: it enables the model to explicitly learn the concept of harmfulness while marginally affecting the generated distribution, thus maintaining the model's utility. It also evaluates each generated answer rather than just the input prompt and provides a stronger defence against sampling-based attacks. In addition, it simplifies the evaluation of the model's robustness and reduces correlated failures when combined with a classifier. We further show an increased robustness to long contexts, and supervised fine-tuning attacks.
Abstract:Misaligned research objectives have considerably hindered progress in adversarial robustness research over the past decade. For instance, an extensive focus on optimizing target metrics, while neglecting rigorous standardized evaluation, has led researchers to pursue ad-hoc heuristic defenses that were seemingly effective. Yet, most of these were exposed as flawed by subsequent evaluations, ultimately contributing little measurable progress to the field. In this position paper, we illustrate that current research on the robustness of large language models (LLMs) risks repeating past patterns with potentially worsened real-world implications. To address this, we argue that realigned objectives are necessary for meaningful progress in adversarial alignment. To this end, we build on established cybersecurity taxonomy to formally define differences between past and emerging threat models that apply to LLMs. Using this framework, we illustrate that progress requires disentangling adversarial alignment into addressable sub-problems and returning to core academic principles, such as measureability, reproducibility, and comparability. Although the field presents significant challenges, the fresh start on adversarial robustness offers the unique opportunity to build on past experience while avoiding previous mistakes.
Abstract:An unintended consequence of the vast pretraining of Large Language Models (LLMs) is the verbatim memorization of fragments of their training data, which may contain sensitive or copyrighted information. In recent years, unlearning has emerged as a solution to effectively remove sensitive knowledge from models after training. Yet, recent work has shown that supposedly deleted information can still be extracted by malicious actors through various attacks. Still, current attacks retrieve sets of possible candidate generations and are unable to pinpoint the output that contains the actual target information. We propose activation steering as a method for exact information retrieval from unlearned LLMs. We introduce a novel approach to generating steering vectors, named Anonymized Activation Steering. Additionally, we develop a simple word frequency method to pinpoint the correct answer among a set of candidates when retrieving unlearned information. Our evaluation across multiple unlearning techniques and datasets demonstrates that activation steering successfully recovers general knowledge (e.g., widely known fictional characters) while revealing limitations in retrieving specific information (e.g., details about non-public individuals). Overall, our results demonstrate that exact information retrieval from unlearned models is possible, highlighting a severe vulnerability of current unlearning techniques.
Abstract:Comprehensive evaluation of Large Language Models (LLMs) is an open research problem. Existing evaluations rely on deterministic point estimates generated via greedy decoding. However, we find that deterministic evaluations fail to capture the whole output distribution of a model, yielding inaccurate estimations of model capabilities. This is particularly problematic in critical contexts such as unlearning and alignment, where precise model evaluations are crucial. To remedy this, we introduce the first formal probabilistic evaluation framework in LLMs. Namely, we derive novel metrics with high-probability guarantees concerning the output distribution of a model. Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment. Through a case study focused on unlearning, we reveal that deterministic evaluations falsely indicate successful unlearning, whereas our probabilistic evaluations demonstrate that most if not all of the supposedly unlearned information remains accessible in these models. Additionally, we propose a novel unlearning loss based on entropy optimization and adaptive temperature scaling, which significantly improves unlearning in probabilistic settings on recent benchmarks. Our proposed shift from point estimates to probabilistic evaluations of output distributions represents an important step toward comprehensive evaluations of LLMs. https://github.com/yascho/probabilistic-unlearning
Abstract:Recent advancements in generative modeling, particularly diffusion models, have opened new directions for time series modeling, achieving state-of-the-art performance in forecasting and synthesis. However, the reliance of diffusion-based models on a simple, fixed prior complicates the generative process since the data and prior distributions differ significantly. We introduce TSFlow, a conditional flow matching (CFM) model for time series that simplifies the generative problem by combining Gaussian processes, optimal transport paths, and data-dependent prior distributions. By incorporating (conditional) Gaussian processes, TSFlow aligns the prior distribution more closely with the temporal structure of the data, enhancing both unconditional and conditional generation. Furthermore, we propose conditional prior sampling to enable probabilistic forecasting with an unconditionally trained model. In our experimental evaluation on eight real-world datasets, we demonstrate the generative capabilities of TSFlow, producing high-quality unconditional samples. Finally, we show that both conditionally and unconditionally trained models achieve competitive results in forecasting benchmarks, surpassing other methods on 6 out of 8 datasets.
Abstract:Understanding human attention is crucial for vision science and AI. While many models exist for free-viewing, less is known about task-driven image exploration. To address this, we introduce CapMIT1003, a dataset with captions and click-contingent image explorations, to study human attention during the captioning task. We also present NevaClip, a zero-shot method for predicting visual scanpaths by combining CLIP models with NeVA algorithms. NevaClip generates fixations to align the representations of foveated visual stimuli and captions. The simulated scanpaths outperform existing human attention models in plausibility for captioning and free-viewing tasks. This research enhances the understanding of human attention and advances scanpath prediction models.
Abstract:Existing studies have shown that Graph Neural Networks (GNNs) are vulnerable to adversarial attacks. Even though Graph Transformers (GTs) surpassed Message-Passing GNNs on several benchmarks, their adversarial robustness properties are unexplored. However, attacking GTs is challenging due to their Positional Encodings (PEs) and special attention mechanisms which can be difficult to differentiate. We overcome these challenges by targeting three representative architectures based on (1) random-walk PEs, (2) pair-wise-shortest-path PEs, and (3) spectral PEs - and propose the first adaptive attacks for GTs. We leverage our attacks to evaluate robustness to (a) structure perturbations on node classification; and (b) node injection attacks for (fake-news) graph classification. Our evaluation reveals that they can be catastrophically fragile and underlines our work's importance and the necessity for adaptive attacks.
Abstract:Their vulnerability to small, imperceptible attacks limits the adoption of deep learning models to real-world systems. Adversarial training has proven to be one of the most promising strategies against these attacks, at the expense of a substantial increase in training time. With the ongoing trend of integrating large-scale synthetic data this is only expected to increase even further. Thus, the need for data-centric approaches that reduce the number of training samples while maintaining accuracy and robustness arises. While data pruning and active learning are prominent research topics in deep learning, they are as of now largely unexplored in the adversarial training literature. We address this gap and propose a new data pruning strategy based on extrapolating data importance scores from a small set of data to a larger set. In an empirical evaluation, we demonstrate that extrapolation-based pruning can efficiently reduce dataset size while maintaining robustness.