Abstract:Many applications in traffic, civil engineering, or electrical engineering revolve around edge-level signals. Such signals can be categorized as inherently directed, for example, the water flow in a pipe network, and undirected, like the diameter of a pipe. Topological methods model edge signals with inherent direction by representing them relative to a so-called orientation assigned to each edge. These approaches can neither model undirected edge signals nor distinguish if an edge itself is directed or undirected. We address these shortcomings by (i) revising the notion of orientation equivariance to enable edge direction-aware topological models, (ii) proposing orientation invariance as an additional requirement to describe signals without inherent direction, and (iii) developing EIGN, an architecture composed of novel direction-aware edge-level graph shift operators, that provably fulfills the aforementioned desiderata. It is the first general-purpose topological GNN for edge-level signals that can model directed and undirected signals while distinguishing between directed and undirected edges. A comprehensive evaluation shows that EIGN outperforms prior work in edge-level tasks, for example, improving in RMSE on flow simulation tasks by up to 43.5%.
Abstract:Existing studies have shown that Graph Neural Networks (GNNs) are vulnerable to adversarial attacks. Even though Graph Transformers (GTs) surpassed Message-Passing GNNs on several benchmarks, their adversarial robustness properties are unexplored. However, attacking GTs is challenging due to their Positional Encodings (PEs) and special attention mechanisms which can be difficult to differentiate. We overcome these challenges by targeting three representative architectures based on (1) random-walk PEs, (2) pair-wise-shortest-path PEs, and (3) spectral PEs - and propose the first adaptive attacks for GTs. We leverage our attacks to evaluate robustness to (a) structure perturbations on node classification; and (b) node injection attacks for (fake-news) graph classification. Our evaluation reveals that they can be catastrophically fragile and underlines our work's importance and the necessity for adaptive attacks.
Abstract:Predictions made by graph neural networks (GNNs) usually lack interpretability due to their complex computational behavior and the abstract nature of graphs. In an attempt to tackle this, many GNN explanation methods have emerged. Their goal is to explain a model's predictions and thereby obtain trust when GNN models are deployed in decision critical applications. Most GNN explanation methods work in a post-hoc manner and provide explanations in the form of a small subset of important edges and/or nodes. In this paper we demonstrate that these explanations can unfortunately not be trusted, as common GNN explanation methods turn out to be highly susceptible to adversarial perturbations. That is, even small perturbations of the original graph structure that preserve the model's predictions may yield drastically different explanations. This calls into question the trustworthiness and practical utility of post-hoc explanation methods for GNNs. To be able to attack GNN explanation models, we devise a novel attack method dubbed \textit{GXAttack}, the first \textit{optimization-based} adversarial attack method for post-hoc GNN explanations under such settings. Due to the devastating effectiveness of our attack, we call for an adversarial evaluation of future GNN explainers to demonstrate their robustness.
Abstract:Spatial Message Passing Graph Neural Networks (MPGNNs) are widely used for learning on graph-structured data. However, key limitations of l-step MPGNNs are that their "receptive field" is typically limited to the l-hop neighborhood of a node and that information exchange between distant nodes is limited by over-squashing. Motivated by these limitations, we propose Spatio-Spectral Graph Neural Networks (S$^2$GNNs) -- a new modeling paradigm for Graph Neural Networks (GNNs) that synergistically combines spatially and spectrally parametrized graph filters. Parameterizing filters partially in the frequency domain enables global yet efficient information propagation. We show that S$^2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs. Further, rethinking graph convolutions at a fundamental level unlocks new design spaces. For example, S$^2$GNNs allow for free positional encodings that make them strictly more expressive than the 1-Weisfeiler-Lehman (WL) test. Moreover, to obtain general-purpose S$^2$GNNs, we propose spectrally parametrized filters for directed graphs. S$^2$GNNs outperform spatial MPGNNs, graph transformers, and graph rewirings, e.g., on the peptide long-range benchmark tasks, and are competitive with state-of-the-art sequence modeling. On a 40 GB GPU, S$^2$GNNs scale to millions of nodes.
Abstract:Current LLM alignment methods are readily broken through specifically crafted adversarial prompts. While crafting adversarial prompts using discrete optimization is highly effective, such attacks typically use more than 100,000 LLM calls. This high computational cost makes them unsuitable for, e.g., quantitative analyses and adversarial training. To remedy this, we revisit Projected Gradient Descent (PGD) on the continuously relaxed input prompt. Although previous attempts with ordinary gradient-based attacks largely failed, we show that carefully controlling the error introduced by the continuous relaxation tremendously boosts their efficacy. Our PGD for LLMs is up to one order of magnitude faster than state-of-the-art discrete optimization to achieve the same devastating attack results.
Abstract:It is well-known that deep learning models are vulnerable to small input perturbations. Such perturbed instances are called adversarial examples. Adversarial examples are commonly crafted to fool a model either at training time (poisoning) or test time (evasion). In this work, we study the symbiosis of poisoning and evasion. We show that combining both threat models can substantially improve the devastating efficacy of adversarial attacks. Specifically, we study the robustness of Graph Neural Networks (GNNs) under structure perturbations and devise a memory-efficient adaptive end-to-end attack for the novel threat model using first-order optimization.
Abstract:Contrastive learning (CL) has emerged as a powerful framework for learning representations of images and text in a self-supervised manner while enhancing model robustness against adversarial attacks. More recently, researchers have extended the principles of contrastive learning to graph-structured data, giving birth to the field of graph contrastive learning (GCL). However, whether GCL methods can deliver the same advantages in adversarial robustness as their counterparts in the image and text domains remains an open question. In this paper, we introduce a comprehensive robustness evaluation protocol tailored to assess the robustness of GCL models. We subject these models to adaptive adversarial attacks targeting the graph structure, specifically in the evasion scenario. We evaluate node and graph classification tasks using diverse real-world datasets and attack strategies. With our work, we aim to offer insights into the robustness of GCL methods and hope to open avenues for potential future research directions.
Abstract:To facilitate reliable deployments of autonomous robots in the real world, Out-of-Distribution (OOD) detection capabilities are often required. A powerful approach for OOD detection is based on density estimation with Normalizing Flows (NFs). However, we find that prior work with NFs attempts to match the complex target distribution topologically with naive base distributions leading to adverse implications. In this work, we circumvent this topological mismatch using an expressive class-conditional base distribution trained with an information-theoretic objective to match the required topology. The proposed method enjoys the merits of wide compatibility with existing learned models without any performance degradation and minimum computation overhead while enhancing OOD detection capabilities. We demonstrate superior results in density estimation and 2D object detection benchmarks in comparison with extensive baselines. Moreover, we showcase the applicability of the method with a real-robot deployment.
Abstract:Despite its success in the image domain, adversarial training does not (yet) stand out as an effective defense for Graph Neural Networks (GNNs) against graph structure perturbations. In the pursuit of fixing adversarial training (1) we show and overcome fundamental theoretical as well as practical limitations of the adopted graph learning setting in prior work; (2) we reveal that more flexible GNNs based on learnable graph diffusion are able to adjust to adversarial perturbations, while the learned message passing scheme is naturally interpretable; (3) we introduce the first attack for structure perturbations that, while targeting multiple nodes at once, is capable of handling global (graph-level) as well as local (node-level) constraints. Including these contributions, we demonstrate that adversarial training is a state-of-the-art defense against adversarial structure perturbations.
Abstract:Many works show that node-level predictions of Graph Neural Networks (GNNs) are unrobust to small, often termed adversarial, changes to the graph structure. However, because manual inspection of a graph is difficult, it is unclear if the studied perturbations always preserve a core assumption of adversarial examples: that of unchanged semantic content. To address this problem, we introduce a more principled notion of an adversarial graph, which is aware of semantic content change. Using Contextual Stochastic Block Models (CSBMs) and real-world graphs, our results uncover: $i)$ for a majority of nodes the prevalent perturbation models include a large fraction of perturbed graphs violating the unchanged semantics assumption; $ii)$ surprisingly, all assessed GNNs show over-robustness - that is robustness beyond the point of semantic change. We find this to be a complementary phenomenon to adversarial examples and show that including the label-structure of the training graph into the inference process of GNNs significantly reduces over-robustness, while having a positive effect on test accuracy and adversarial robustness. Theoretically, leveraging our new semantics-aware notion of robustness, we prove that there is no robustness-accuracy tradeoff for inductively classifying a newly added node.