Abstract:The ability to learn multi-modal action distributions is indispensable for robotic manipulation policies to perform precise and robust control. Flow-based generative models have recently emerged as a promising solution to learning distributions of actions, offering one-step action generation and thus achieving much higher sampling efficiency compared to diffusion-based methods. However, existing flow-based policies suffer from representation collapse, the inability to distinguish similar visual representations, leading to failures in precise manipulation tasks. We propose DM1 (MeanFlow with Dispersive Regularization for One-Step Robotic Manipulation), a novel flow matching framework that integrates dispersive regularization into MeanFlow to prevent collapse while maintaining one-step efficiency. DM1 employs multiple dispersive regularization variants across different intermediate embedding layers, encouraging diverse representations across training batches without introducing additional network modules or specialized training procedures. Experiments on RoboMimic benchmarks show that DM1 achieves 20-40 times faster inference (0.07s vs. 2-3.5s) and improves success rates by 10-20 percentage points, with the Lift task reaching 99% success over 85% of the baseline. Real-robot deployment on a Franka Panda further validates that DM1 transfers effectively from simulation to the physical world. To the best of our knowledge, this is the first work to leverage representation regularization to enable flow-based policies to achieve strong performance in robotic manipulation, establishing a simple yet powerful approach for efficient and robust manipulation.
Abstract:While search-augmented large language models (LLMs) exhibit impressive capabilities, their reliability in complex multi-hop reasoning remains limited. This limitation arises from three fundamental challenges: decomposition errors, where tasks are incorrectly broken down; retrieval missing, where key evidence fails to be retrieved; and reasoning errors, where flawed logic propagates through the reasoning chain. A single failure in any of these stages can derail the final answer. We propose Erasable Reinforcement Learning (ERL), a novel framework that transforms fragile reasoning into a robust process. ERL explicitly identifies faulty steps, erases them, and regenerates reasoning in place, preventing defective logic from propagating through the reasoning chain. This targeted correction mechanism turns brittle reasoning into a more resilient process. Models trained with ERL, termed ESearch, achieve substantial improvements on HotpotQA, MuSiQue, 2Wiki, and Bamboogle, with the 3B model achieving +8.48% EM and +11.56% F1, and the 7B model achieving +5.38% EM and +7.22% F1 over previous state-of-the-art(SOTA) results. These findings suggest that erasable reinforcement learning provides a powerful paradigm shift for robust multi-step reasoning in LLMs.
Abstract:Understanding and reasoning about entire software repositories is an essential capability for intelligent software engineering tools. While existing benchmarks such as CoSQA and CodeQA have advanced the field, they predominantly focus on small, self-contained code snippets. These setups fail to capture the complexity of real-world repositories, where effective understanding and reasoning often require navigating multiple files, understanding software architecture, and grounding answers in long-range code dependencies. In this paper, we present SWE-QA, a repository-level code question answering (QA) benchmark designed to facilitate research on automated QA systems in realistic code environments. SWE-QA involves 576 high-quality question-answer pairs spanning diverse categories, including intention understanding, cross-file reasoning, and multi-hop dependency analysis. To construct SWE-QA, we first crawled 77,100 GitHub issues from 11 popular repositories. Based on an analysis of naturally occurring developer questions extracted from these issues, we developed a two-level taxonomy of repository-level questions and constructed a set of seed questions for each category. For each category, we manually curated and validated questions and collected their corresponding answers. As a prototype application, we further develop SWE-QA-Agent, an agentic framework in which LLM agents reason and act to find answers automatically. We evaluate six advanced LLMs on SWE-QA under various context augmentation strategies. Experimental results highlight the promise of LLMs, particularly our SWE-QA-Agent framework, in addressing repository-level QA, while also revealing open challenges and pointing to future research directions.
Abstract:The rapid development of AR/VR, remote sensing, satellite radar, and medical equipment has created an imperative demand for ultra efficient image compression and reconstruction that exceed the capabilities of electronic processors. For the first time, we demonstrate an end to end image compression and reconstruction approach using an optoelectronic computing processor,achieving orders of magnitude higher speed and lower energy consumption than electronic counterparts. At its core is a 32X32 silicon photonic computing chip, which monolithically integrates 32 high speed modulators, 32 detectors, and a programmable photonic matrix core, copackaged with all necessary control electronics (TIA, ADC, DAC, FPGA etc.). Leveraging the photonic matrix core programmability, the processor generates trainable compressive matrices, enabling adjustable image compression ratios (from 2X to 256X) to meet diverse application needs. Deploying a custom lightweight photonic integrated circuit oriented network (LiPICO-Net) enables high quality reconstruction of compressed images. Our approach delivers an end to end latency of only 49.5ps/pixel while consuming only less than 10.6nJ/pixel-both metrics representing 2-3 orders of magnitude improvement compared with classical models running on state-of-the-art GPUs. We validate the system on a 130 million-pixel aerial imagery, enabling real time compression where electronic systems falter due to power and latency constraints. This work not only provides a transformative solution for massive image processing but also opens new avenues for photonic computing applications.
Abstract:Within the family of convolutional neural networks, InceptionNeXt has shown excellent competitiveness in image classification and a number of downstream tasks. Built on parallel one-dimensional strip convolutions, however, it suffers from limited ability of capturing spatial dependencies along different dimensions and fails to fully explore spatial modeling in local neighborhood. Besides, inherent locality constraints of convolution operations are detrimental to effective global context modeling. To overcome these limitations, we propose a novel backbone architecture termed InceptionMamba in this study. More specifically, the traditional one-dimensional strip convolutions are replaced by orthogonal band convolutions in our InceptionMamba to achieve cohesive spatial modeling. Furthermore, global contextual modeling can be achieved via a bottleneck Mamba module, facilitating enhanced cross-channel information fusion and enlarged receptive field. Extensive evaluations on classification and various downstream tasks demonstrate that the proposed InceptionMamba achieves state-of-the-art performance with superior parameter and computational efficiency. The source code will be available at https://github.com/Wake1021/InceptionMamba.
Abstract:Manual slide creation is labor-intensive and requires expert prior knowledge. Existing natural language-based LLM generation methods struggle to capture the visual and structural nuances of slide designs. To address this, we formalize the Reference Image to Slide Generation task and propose Slide2Code, the first benchmark with difficulty-tiered samples based on a novel Slide Complexity Metric. We introduce SlideCoder, a layout-aware, retrieval-augmented framework for generating editable slides from reference images. SlideCoder integrates a Color Gradient-based Segmentation algorithm and a Hierarchical Retrieval-Augmented Generation method to decompose complex tasks and enhance code generation. We also release SlideMaster, a 7B open-source model fine-tuned with improved reverse-engineered data. Experiments show that SlideCoder outperforms state-of-the-art baselines by up to 40.5 points, demonstrating strong performance across layout fidelity, execution accuracy, and visual consistency. Our code is available at https://github.com/vinsontang1/SlideCoder.
Abstract:Efficient multi-hop reasoning requires Large Language Models (LLMs) based agents to acquire high-value external knowledge iteratively. Previous work has explored reinforcement learning (RL) to train LLMs to perform search-based document retrieval, achieving notable improvements in QA performance, but underperform on complex, multi-hop QA resulting from the sparse rewards from global signal only. To address this gap in existing research, we introduce StepSearch, a framework for search LLMs that trained with step-wise proximal policy optimization method. It consists of richer and more detailed intermediate search rewards and token-level process supervision based on information gain and redundancy penalties to better guide each search step. We constructed a fine-grained question-answering dataset containing sub-question-level search trajectories based on open source datasets through a set of data pipeline method. On standard multi-hop QA benchmarks, it significantly outperforms global-reward baselines, achieving 11.2% and 4.2% absolute improvements for 3B and 7B models over various search with RL baselines using only 19k training data, demonstrating the effectiveness of fine-grained, stepwise supervision in optimizing deep search LLMs. Our implementation is publicly available at https://github.com/zxh20001117/StepSearch.
Abstract:Recent advances in test-time scaling suggest that Large Language Models (LLMs) can gain better capabilities by generating Chain-of-Thought reasoning (analogous to human thinking) to respond a given request, and meanwhile exploring more reasoning branches (i.e., generating multiple responses and ensembling them) can improve the final output quality. However, when incorporating the two scaling dimensions, we find that the system efficiency is dampened significantly for two reasons. Firstly, the time cost to generate the final output increases substantially as many reasoning branches would be trapped in the over-thinking dilemma, producing excessively long responses. Secondly, generating multiple reasoning branches for each request increases memory consumption, which is unsuitable for LLM serving since we can only batch a limited number of requests to process simultaneously. To address this, we present SART, a serving framework for efficient and accurate LLM reasoning. The essential idea is to manage the thinking to be short and right, rather than long. For one thing, we devise a redundant sampling with early stopping approach based on empirical observations and theoretic analysis, which increases the likelihood of obtaining short-thinking responses when sampling reasoning branches. For another, we propose to dynamically prune low-quality branches so that only right-thinking branches are maintained, reducing the memory consumption and allowing us to batch more requests. Experimental results demonstrate that SART not only improves the accuracy of LLM reasoning but also enhances the serving efficiency, outperforming existing methods by up to 28.2 times and on average 15.7 times in terms of efficiency when achieving the same level of accuracy.
Abstract:Leveraging a newly released open dataset of Lane Keeping Assist (LKA) systems from production vehicles, this paper presents the first comprehensive empirical analysis of real-world LKA performance. Our study yields three key findings: (i) LKA failures can be systematically categorized into perception, planning, and control errors. We present representative examples of each failure mode through in-depth analysis of LKA-related CAN signals, enabling both justification of the failure mechanisms and diagnosis of when and where each module begins to degrade; (ii) LKA systems tend to follow a fixed lane-centering strategy, often resulting in outward drift that increases linearly with road curvature, whereas human drivers proactively steer slightly inward on similar curved segments; (iii) We provide the first statistical summary and distribution analysis of environmental and road conditions under LKA failures, identifying with statistical significance that faded lane markings, low pavement laneline contrast, and sharp curvature are the most dominant individual factors, along with critical combinations that substantially increase failure likelihood. Building on these insights, we propose a theoretical model that integrates road geometry, speed limits, and LKA steering capability to inform infrastructure design. Additionally, we develop a machine learning-based model to assess roadway readiness for LKA deployment, offering practical tools for safer infrastructure planning, especially in rural areas. This work highlights key limitations of current LKA systems and supports the advancement of safer and more reliable autonomous driving technologies.
Abstract:Lane Keeping Assist systems, while increasingly prevalent, often suffer from unpredictable real-world failures, largely due to their opaque, black-box nature, which limits driver anticipation and trust. To bridge the gap between automated assistance and effective human oversight, we present LKAlert, a novel supervisory alert system that leverages VLM to forecast potential LKA risk 1-3 seconds in advance. LKAlert processes dash-cam video and CAN data, integrating surrogate lane segmentation features from a parallel interpretable model as automated guiding attention. Unlike traditional binary classifiers, LKAlert issues both predictive alert and concise natural language explanation, enhancing driver situational awareness and trust. To support the development and evaluation of such systems, we introduce OpenLKA-Alert, the first benchmark dataset designed for predictive and explainable LKA failure warnings. It contains synchronized multimodal inputs and human-authored justifications across annotated temporal windows. We further contribute a generalizable methodological framework for VLM-based black-box behavior prediction, combining surrogate feature guidance with LoRA. This framework enables VLM to reason over structured visual context without altering its vision backbone, making it broadly applicable to other complex, opaque systems requiring interpretable oversight. Empirical results correctly predicts upcoming LKA failures with 69.8% accuracy and a 58.6\% F1-score. The system also generates high-quality textual explanations for drivers (71.7 ROUGE-L) and operates efficiently at approximately 2 Hz, confirming its suitability for real-time, in-vehicle use. Our findings establish LKAlert as a practical solution for enhancing the safety and usability of current ADAS and offer a scalable paradigm for applying VLMs to human-centered supervision of black-box automation.