Abstract:Cross-domain recommendation (CDR) methods are proposed to tackle the sparsity problem in click through rate (CTR) estimation. Existing CDR methods directly transfer knowledge from the source domains to the target domain and ignore the heterogeneities among domains, including feature dimensional heterogeneity and latent space heterogeneity, which may lead to negative transfer. Besides, most of the existing methods are based on single-source transfer, which cannot simultaneously utilize knowledge from multiple source domains to further improve the model performance in the target domain. In this paper, we propose a centralized-distributed transfer model (CDTM) for CDR based on multi-source heterogeneous transfer learning. To address the issue of feature dimension heterogeneity, we build a dual embedding structure: domain specific embedding (DSE) and global shared embedding (GSE) to model the feature representation in the single domain and the commonalities in the global space,separately. To solve the latent space heterogeneity, the transfer matrix and attention mechanism are used to map and combine DSE and GSE adaptively. Extensive offline and online experiments demonstrate the effectiveness of our model.
Abstract:This paper presents a novel point cloud compression method COT-PCC by formulating the task as a constrained optimal transport (COT) problem. COT-PCC takes the bitrate of compressed features as an extra constraint of optimal transport (OT) which learns the distribution transformation between original and reconstructed points. Specifically, the formulated COT is implemented with a generative adversarial network (GAN) and a bitrate loss for training. The discriminator measures the Wasserstein distance between input and reconstructed points, and a generator calculates the optimal mapping between distributions of input and reconstructed point cloud. Moreover, we introduce a learnable sampling module for downsampling in the compression procedure. Extensive results on both sparse and dense point cloud datasets demonstrate that COT-PCC outperforms state-of-the-art methods in terms of both CD and PSNR metrics. Source codes are available at \url{https://github.com/cognaclee/PCC-COT}.
Abstract:Individual objects, whether users or services, within a specific region often exhibit similar network states due to their shared origin from the same city or autonomous system (AS). Despite this regional network similarity, many existing techniques overlook its potential, resulting in subpar performance arising from challenges such as data sparsity and label imbalance. In this paper, we introduce the regional-based dual latent state learning network(R2SL), a novel deep learning framework designed to overcome the pitfalls of traditional individual object-based prediction techniques in Quality of Service (QoS) prediction. Unlike its predecessors, R2SL captures the nuances of regional network behavior by deriving two distinct regional network latent states: the city-network latent state and the AS-network latent state. These states are constructed utilizing aggregated data from common regions rather than individual object data. Furthermore, R2SL adopts an enhanced Huber loss function that adjusts its linear loss component, providing a remedy for prevalent label imbalance issues. To cap off the prediction process, a multi-scale perception network is leveraged to interpret the integrated feature map, a fusion of regional network latent features and other pertinent information, ultimately accomplishing the QoS prediction. Through rigorous testing on real-world QoS datasets, R2SL demonstrates superior performance compared to prevailing state-of-the-art methods. Our R2SL approach ushers in an innovative avenue for precise QoS predictions by fully harnessing the regional network similarities inherent in objects.
Abstract:Quality of Service (QoS) prediction is an essential task in recommendation systems, where accurately predicting unknown QoS values can improve user satisfaction. However, existing QoS prediction techniques may perform poorly in the presence of noise data, such as fake location information or virtual gateways. In this paper, we propose the Probabilistic Deep Supervision Network (PDS-Net), a novel framework for QoS prediction that addresses this issue. PDS-Net utilizes a Gaussian-based probabilistic space to supervise intermediate layers and learns probability spaces for both known features and true labels. Moreover, PDS-Net employs a condition-based multitasking loss function to identify objects with noise data and applies supervision directly to deep features sampled from the probability space by optimizing the Kullback-Leibler distance between the probability space of these objects and the real-label probability space. Thus, PDS-Net effectively reduces errors resulting from the propagation of corrupted data, leading to more accurate QoS predictions. Experimental evaluations on two real-world QoS datasets demonstrate that the proposed PDS-Net outperforms state-of-the-art baselines, validating the effectiveness of our approach.
Abstract:Real-time 3D human pose estimation is crucial for human-computer interaction. It is cheap and practical to estimate 3D human pose only from monocular video. However, recent bone splicing based 3D human pose estimation method brings about the problem of cumulative error. In this paper, the concept of virtual bones is proposed to solve such a challenge. The virtual bones are imaginary bones between non-adjacent joints. They do not exist in reality, but they bring new loop constraints for the estimation of 3D human joints. The proposed network in this paper predicts real bones and virtual bones, simultaneously. The final length of real bones is constrained and learned by the loop constructed by the predicted real bones and virtual bones. Besides, the motion constraints of joints in consecutive frames are considered. The consistency between the 2D projected position displacement predicted by the network and the captured real 2D displacement by the camera is proposed as a new projection consistency loss for the learning of 3D human pose. The experiments on the Human3.6M dataset demonstrate the good performance of the proposed method. Ablation studies demonstrate the effectiveness of the proposed inter-frame projection consistency constraints and intra-frame loop constraints.
Abstract:In recent years, the number of online services has grown rapidly, invoke the required services through the cloud platform has become the primary trend. How to help users choose and recommend high-quality services among huge amounts of unused services has become a hot issue in research. Among the existing QoS prediction methods, the collaborative filtering(CF) method can only learn low-dimensional linear characteristics, and its effect is limited by sparse data. Although existing deep learning methods could capture high-dimensional nonlinear features better, most of them only use the single feature of identity, and the problem of network deepening gradient disappearance is serious, so the effect of QoS prediction is unsatisfactory. To address these problems, we propose an advanced probability distribution and location-aware ResNet approach for QoS Prediction(PLRes). This approach considers the historical invocations probability distribution and location characteristics of users and services, and first use the ResNet in QoS prediction to reuses the features, which alleviates the problems of gradient disappearance and model degradation. A series of experiments are conducted on a real-world web service dataset WS-DREAM. The results indicate that PLRes model is effective for QoS prediction and at the density of 5%-30%, which means the data is sparse, it significantly outperforms a state-of-the-art approach LDCF by 12.35%-15.37% in terms of MAE.