Abstract:Vision Transformers (ViTs) have been widely applied in various computer vision and vision-language tasks. To gain insights into their robustness in practical scenarios, transferable adversarial examples on ViTs have been extensively studied. A typical approach to improving adversarial transferability is by refining the surrogate model. However, existing work on ViTs has restricted their surrogate refinement to backward propagation. In this work, we instead focus on Forward Propagation Refinement (FPR) and specifically refine two key modules of ViTs: attention maps and token embeddings. For attention maps, we propose Attention Map Diversification (AMD), which diversifies certain attention maps and also implicitly imposes beneficial gradient vanishing during backward propagation. For token embeddings, we propose Momentum Token Embedding (MTE), which accumulates historical token embeddings to stabilize the forward updates in both the Attention and MLP blocks. We conduct extensive experiments with adversarial examples transferred from ViTs to various CNNs and ViTs, demonstrating that our FPR outperforms the current best (backward) surrogate refinement by up to 7.0\% on average. We also validate its superiority against popular defenses and its compatibility with other transfer methods. Codes and appendix are available at https://github.com/RYC-98/FPR.
Abstract:Deep learning has shown remarkable success in medical image analysis, but its reliance on large volumes of high-quality labeled data limits its applicability. While noisy labeled data are easier to obtain, directly incorporating them into training can degrade model performance. To address this challenge, we propose a Mean Teacher-based Adaptive Label Correction (ALC) self-ensemble framework for robust medical image segmentation with noisy labels. The framework leverages the Mean Teacher architecture to ensure consistent learning under noise perturbations. It includes an adaptive label refinement mechanism that dynamically captures and weights differences across multiple disturbance versions to enhance the quality of noisy labels. Additionally, a sample-level uncertainty-based label selection algorithm is introduced to prioritize high-confidence samples for network updates, mitigating the impact of noisy annotations. Consistency learning is integrated to align the predictions of the student and teacher networks, further enhancing model robustness. Extensive experiments on two public datasets demonstrate the effectiveness of the proposed framework, showing significant improvements in segmentation performance. By fully exploiting the strengths of the Mean Teacher structure, the ALC framework effectively processes noisy labels, adapts to challenging scenarios, and achieves competitive results compared to state-of-the-art methods.
Abstract:Multimodal learning integrates complementary information from diverse modalities to enhance the decision-making process. However, the potential of multimodal collaboration remains under-exploited due to disparities in data quality and modality representation capabilities. To address this, we introduce DynCIM, a novel dynamic curriculum learning framework designed to quantify the inherent imbalances from both sample and modality perspectives. DynCIM employs a sample-level curriculum to dynamically assess each sample's difficulty according to prediction deviation, consistency, and stability, while a modality-level curriculum measures modality contributions from global and local. Furthermore, a gating-based dynamic fusion mechanism is introduced to adaptively adjust modality contributions, minimizing redundancy and optimizing fusion effectiveness. Extensive experiments on six multimodal benchmarking datasets, spanning both bimodal and trimodal scenarios, demonstrate that DynCIM consistently outperforms state-of-the-art methods. Our approach effectively mitigates modality and sample imbalances while enhancing adaptability and robustness in multimodal learning tasks. Our code is available at https://github.com/Raymond-Qiancx/DynCIM.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:Effective conversational systems are expected to dynamically generate contextual follow-up questions to elicit new information while maintaining the conversation flow. While humans excel at asking diverse and informative questions by intuitively assessing both obtained and missing information, existing models often fall short of human performance on this task. To mitigate this, we propose a method that generates diverse and informative questions based on targeting unanswered information using a hypothetical LLM-generated "comprehensive answer". Our method is applied to augment an existing follow-up questions dataset. The experimental results demonstrate that language models fine-tuned on the augmented datasets produce follow-up questions of significantly higher quality and diversity. This promising approach could be effectively adopted to future work to augment information-seeking dialogues for reducing ambiguities and improving the accuracy of LLM answers.
Abstract:Applying Multimodal Large Language Models (MLLMs) to video understanding presents significant challenges due to the need to model temporal relations across frames. Existing approaches adopt either implicit temporal modeling, relying solely on the LLM decoder, or explicit temporal modeling, employing auxiliary temporal encoders. To investigate this debate between the two paradigms, we propose the Stackable Temporal Encoder (STE). STE enables flexible explicit temporal modeling with adjustable temporal receptive fields and token compression ratios. Using STE, we systematically compare implicit and explicit temporal modeling across dimensions such as overall performance, token compression effectiveness, and temporal-specific understanding. We also explore STE's design considerations and broader impacts as a plug-in module and in image modalities. Our findings emphasize the critical role of explicit temporal modeling, providing actionable insights to advance video MLLMs.
Abstract:Transferable adversarial examples are known to cause threats in practical, black-box attack scenarios. A notable approach to improving transferability is using integrated gradients (IG), originally developed for model interpretability. In this paper, we find that existing IG-based attacks have limited transferability due to their naive adoption of IG in model interpretability. To address this limitation, we focus on the IG integration path and refine it in three aspects: multiplicity, monotonicity, and diversity, supported by theoretical analyses. We propose the Multiple Monotonic Diversified Integrated Gradients (MuMoDIG) attack, which can generate highly transferable adversarial examples on different CNN and ViT models and defenses. Experiments validate that MuMoDIG outperforms the latest IG-based attack by up to 37.3\% and other state-of-the-art attacks by 8.4\%. In general, our study reveals that migrating established techniques to improve transferability may require non-trivial efforts. Code is available at \url{https://github.com/RYC-98/MuMoDIG}.
Abstract:The emergence of the Large Language Model (LLM) has shown their superiority in a wide range of disciplines, including language understanding and translation, relational logic reasoning, and even partial differential equations solving. The transformer is the pervasive backbone architecture for the foundation model construction. It is vital to research how to adjust the Transformer architecture to achieve an end-to-end privacy guarantee in LLM fine-tuning. In this paper, we investigate three potential information leakage during a federated fine-tuning procedure for LLM (FedLLM). Based on the potential information leakage, we provide an end-to-end privacy guarantee solution for FedLLM by inserting two-stage randomness. The first stage is to train a gradient auto-encoder with a Gaussian random prior based on the statistical information of the gradients generated by local clients. The second stage is to fine-tune the overall LLM with a differential privacy guarantee by adopting appropriate Gaussian noises. We show the efficiency and accuracy gains of our proposed method with several foundation models and two popular evaluation benchmarks. Furthermore, we present a comprehensive privacy analysis with Gaussian Differential Privacy (GDP) and Renyi Differential Privacy (RDP).
Abstract:Machine learning (ML) has been extensively employed in planar perovskite photovoltaics to screen effective organic molecular additives, while encountering predictive biases for novel materials due to small datasets and reliance on predefined descriptors. Present work thus proposes an effective approach, Co-Pilot for Perovskite Additive Screener (Co-PAS), an ML-driven framework designed to accelerate additive screening for perovskite solar cells (PSCs). Co-PAS overcomes predictive biases by integrating the Molecular Scaffold Classifier (MSC) for scaffold-based pre-screening and utilizing Junction Tree Variational Autoencoder (JTVAE) latent vectors to enhance molecular structure representation, thereby enhancing the accuracy of power conversion efficiency (PCE) predictions. Leveraging Co-PAS, we integrate domain knowledge to screen an extensive dataset of 250,000 molecules from PubChem, prioritizing candidates based on predicted PCE values and key molecular properties such as donor number, dipole moment, and hydrogen bond acceptor count. This workflow leads to the identification of several promising passivating molecules, including the novel Boc-L-threonine N-hydroxysuccinimide ester (BTN), which, to our knowledge, has not been explored as an additive in PSCs and achieves a device PCE of 25.20%. Our results underscore the potential of Co-PAS in advancing additive discovery for high-performance PSCs.
Abstract:Compositional Zero-Shot Learning (CZSL) aims to recognize unseen combinations of seen attributes and objects. Current CLIP-based methods in CZSL, despite their advancements, often fail to effectively understand and link the attributes and objects due to inherent limitations in CLIP's pretraining mechanisms. To address these shortcomings, this paper introduces a novel framework, Understanding and Linking Attributes and Objects (ULAO) in CZSL, which comprises two innovative modules. The Understanding Attributes and Objects (UAO) module improves primitive understanding by sequential primitive prediction and leveraging recognized objects as contextual hints for attribute classification. Concurrently, the Linking Attributes and Objects (LAO) module improves the attribute-object linkage understanding through a new contrastive learning strategy that incorporates tailored hard negative generation and adaptive loss adjustments. We demonstrate our model's superiority by showcasing its state-of-the-art performance across three benchmark datasets in both Closed-World (CW) and Open-World (OW) scenarios.