Abstract:Existing 3D Gaussian Splatting (3DGS) methods for hand rendering rely on rigid skeletal motion with an oversimplified non-rigid motion model, which fails to capture fine geometric and appearance details. Additionally, they perform densification based solely on per-point gradients and process poses independently, ignoring spatial and temporal correlations. These limitations lead to geometric detail loss, temporal instability, and inefficient point distribution. To address these issues, we propose HandSplat, a novel Gaussian Splatting-based framework that enhances both fidelity and stability for hand rendering. To improve fidelity, we extend standard 3DGS attributes with implicit geometry and appearance embeddings for finer non-rigid motion modeling while preserving the static hand characteristic modeled by original 3DGS attributes. Additionally, we introduce a local gradient-aware densification strategy that dynamically refines Gaussian density in high-variation regions. To improve stability, we incorporate pose-conditioned attribute regularization to encourage attribute consistency across similar poses, mitigating temporal artifacts. Extensive experiments on InterHand2.6M demonstrate that HandSplat surpasses existing methods in fidelity and stability while achieving real-time performance. We will release the code and pre-trained models upon acceptance.
Abstract:Large language models (LLMs) suffer from temporal misalignment issues especially across long span of time. The issue arises from knowing that LLMs are trained on large amounts of data where temporal information is rather sparse over long times, such as thousands of years, resulting in insufficient learning or catastrophic forgetting by the LLMs. This paper proposes a methodology named "Ticktack" for addressing the LLM's long-time span misalignment in a yearly setting. Specifically, we first propose to utilize the sexagenary year expression instead of the Gregorian year expression employed by LLMs, achieving a more uniform distribution in yearly granularity. Then, we employ polar coordinates to model the sexagenary cycle of 60 terms and the year order within each term, with additional temporal encoding to ensure LLMs understand them. Finally, we present a temporal representational alignment approach for post-training LLMs that effectively distinguishes time points with relevant knowledge, hence improving performance on time-related tasks, particularly over a long period. We also create a long time span benchmark for evaluation. Experimental results prove the effectiveness of our proposal.
Abstract:Thermal infrared imaging offers the advantage of all-weather capability, enabling non-intrusive measurement of an object's surface temperature. Consequently, thermal infrared images are employed to reconstruct 3D models that accurately reflect the temperature distribution of a scene, aiding in applications such as building monitoring and energy management. However, existing approaches predominantly focus on static 3D reconstruction for a single time period, overlooking the impact of environmental factors on thermal radiation and failing to predict or analyze temperature variations over time. To address these challenges, we propose the NTR-Gaussian method, which treats temperature as a form of thermal radiation, incorporating elements like convective heat transfer and radiative heat dissipation. Our approach utilizes neural networks to predict thermodynamic parameters such as emissivity, convective heat transfer coefficient, and heat capacity. By integrating these predictions, we can accurately forecast thermal temperatures at various times throughout a nighttime scene. Furthermore, we introduce a dynamic dataset specifically for nighttime thermal imagery. Extensive experiments and evaluations demonstrate that NTR-Gaussian significantly outperforms comparison methods in thermal reconstruction, achieving a predicted temperature error within 1 degree Celsius.
Abstract:Graph Neural Networks (GNNs) have demonstrated strong representation learning capabilities for graph-based tasks. Recent advances on GNNs leverage geometric properties, such as curvature, to enhance its representation capabilities by modeling complex connectivity patterns and information flow within graphs. However, most existing approaches focus solely on discrete graph topology, overlooking diffusion dynamics and task-specific dependencies essential for effective learning. To address this, we propose integrating Bakry-\'Emery curvature, which captures both structural and task-driven aspects of information propagation. We develop an efficient, learnable approximation strategy, making curvature computation scalable for large graphs. Furthermore, we introduce an adaptive depth mechanism that dynamically adjusts message-passing layers per vertex based on its curvature, ensuring efficient propagation. Our theoretical analysis establishes a link between curvature and feature distinctiveness, showing that high-curvature vertices require fewer layers, while low-curvature ones benefit from deeper propagation. Extensive experiments on benchmark datasets validate the effectiveness of our approach, showing consistent performance improvements across diverse graph learning tasks.
Abstract:In the field of image-based drug discovery, capturing the phenotypic response of cells to various drug treatments and perturbations is a crucial step. However, existing methods require computationally extensive and complex multi-step procedures, which can introduce inefficiencies, limit generalizability, and increase potential errors. To address these challenges, we present PhenoProfiler, an innovative model designed to efficiently and effectively extract morphological representations, enabling the elucidation of phenotypic changes induced by treatments. PhenoProfiler is designed as an end-to-end tool that processes whole-slide multi-channel images directly into low-dimensional quantitative representations, eliminating the extensive computational steps required by existing methods. It also includes a multi-objective learning module to enhance robustness, accuracy, and generalization in morphological representation learning. PhenoProfiler is rigorously evaluated on large-scale publicly available datasets, including over 230,000 whole-slide multi-channel images in end-to-end scenarios and more than 8.42 million single-cell images in non-end-to-end settings. Across these benchmarks, PhenoProfiler consistently outperforms state-of-the-art methods by up to 20%, demonstrating substantial improvements in both accuracy and robustness. Furthermore, PhenoProfiler uses a tailored phenotype correction strategy to emphasize relative phenotypic changes under treatments, facilitating the detection of biologically meaningful signals. UMAP visualizations of treatment profiles demonstrate PhenoProfiler ability to effectively cluster treatments with similar biological annotations, thereby enhancing interpretability. These findings establish PhenoProfiler as a scalable, generalizable, and robust tool for phenotypic learning.
Abstract:Information theft attacks pose a significant risk to Large Language Model (LLM) tool-learning systems. Adversaries can inject malicious commands through compromised tools, manipulating LLMs to send sensitive information to these tools, which leads to potential privacy breaches. However, existing attack approaches are black-box oriented and rely on static commands that cannot adapt flexibly to the changes in user queries and the invocation chain of tools. It makes malicious commands more likely to be detected by LLM and leads to attack failure. In this paper, we propose AutoCMD, a dynamic attack comment generation approach for information theft attacks in LLM tool-learning systems. Inspired by the concept of mimicking the familiar, AutoCMD is capable of inferring the information utilized by upstream tools in the toolchain through learning on open-source systems and reinforcement with target system examples, thereby generating more targeted commands for information theft. The evaluation results show that AutoCMD outperforms the baselines with +13.2% $ASR_{Theft}$, and can be generalized to new tool-learning systems to expose their information leakage risks. We also design four defense methods to effectively protect tool-learning systems from the attack.
Abstract:Sequential recommendation is a key area in the field of recommendation systems aiming to model user interest based on historical interaction sequences with irregular intervals. While previous recurrent neural network-based and attention-based approaches have achieved significant results, they have limitations in capturing system continuity due to the discrete characteristics. In the context of continuous-time modeling, state space model (SSM) offers a potential solution, as it can effectively capture the dynamic evolution of user interest over time. However, existing SSM-based approaches ignore the impact of irregular time intervals within historical user interactions, making it difficult to model complexed user-item transitions in sequences. To address this issue, we propose a hybrid SSM-based model called SS4Rec for continuous-time sequential recommendation. SS4Rec integrates a time-aware SSM to handle irregular time intervals and a relation-aware SSM to model contextual dependencies, enabling it to infer user interest from both temporal and sequential perspectives. In the training process, the time-aware SSM and the relation-aware SSM are discretized by variable stepsizes according to user interaction time intervals and input data, respectively. This helps capture the continuous dependency from irregular time intervals and provides time-specific personalized recommendations. Experimental studies on five benchmark datasets demonstrate the superiority and effectiveness of SS4Rec.
Abstract:In deep reinforcement learning, policy optimization methods need to deal with issues such as function approximation and the reuse of off-policy data. Standard policy gradient methods do not handle off-policy data well, leading to premature convergence and instability. This paper introduces a method to stabilize policy optimization when off-policy data are reused. The idea is to include a Bregman divergence between the behavior policy that generates the data and the current policy to ensure small and safe policy updates with off-policy data. The Bregman divergence is calculated between the state distributions of two policies, instead of only on the action probabilities, leading to a divergence augmentation formulation. Empirical experiments on Atari games show that in the data-scarce scenario where the reuse of off-policy data becomes necessary, our method can achieve better performance than other state-of-the-art deep reinforcement learning algorithms.
Abstract:In traditional sound event localization and detection (SELD) tasks, the focus is typically on sound event detection (SED) and direction-of-arrival (DOA) estimation, but they fall short of providing full spatial information about the sound source. The 3D SELD task addresses this limitation by integrating source distance estimation (SDE), allowing for complete spatial localization. We propose three approaches to tackle this challenge: a novel method with independent training and joint prediction, which firstly treats DOA and distance estimation as separate tasks and then combines them to solve 3D SELD; a dual-branch representation with source Cartesian coordinate used for simultaneous DOA and distance estimation; and a three-branch structure that jointly models SED, DOA, and SDE within a unified framework. Our proposed method ranked first in the DCASE 2024 Challenge Task 3, demonstrating the effectiveness of joint modeling for addressing the 3D SELD task. The relevant code for this paper will be open-sourced in the future.
Abstract:Being a form of biometric identification, the security of the speaker identification (SID) system is of utmost importance. To better understand the robustness of SID systems, we aim to perform more realistic attacks in SID, which are challenging for both humans and machines to detect. In this study, we propose DiffAttack, a novel timbre-reserved adversarial attack approach that exploits the capability of a diffusion-based voice conversion (DiffVC) model to generate adversarial fake audio with distinct target speaker attribution. By introducing adversarial constraints into the generative process of the diffusion-based voice conversion model, we craft fake samples that effectively mislead target models while preserving speaker-wise characteristics. Specifically, inspired by the use of randomly sampled Gaussian noise in conventional adversarial attacks and diffusion processes, we incorporate adversarial constraints into the reverse diffusion process. These constraints subtly guide the reverse diffusion process toward aligning with the target speaker distribution. Our experiments on the LibriTTS dataset indicate that DiffAttack significantly improves the attack success rate compared to vanilla DiffVC and other methods. Moreover, objective and subjective evaluations demonstrate that introducing adversarial constraints does not compromise the speech quality generated by the DiffVC model.