Abstract:LLMs have advanced tool-using agents for real-world applications, yet they often lead to unexpected behaviors or results. Beyond obvious failures, the subtle issue of "intent deviation" severely hinders reliable evaluation and performance improvement. Existing post-training methods generally leverage either real system samples or virtual data simulated by LLMs. However, the former is costly due to reliance on hand-crafted user requests, while the latter suffers from distribution shift from the real tools in the wild. Additionally, both methods lack negative samples tailored to intent deviation scenarios, hindering effective guidance on preference learning. We introduce RISE, a "Real-to-Virtual" method designed to mitigate intent deviation. Anchoring on verified tool primitives, RISE synthesizes virtual trajectories and generates diverse negative samples through mutation on critical parameters. With synthetic data, RISE fine-tunes backbone LLMs via the two-stage training for intent alignment. Evaluation results demonstrate that data synthesized by RISE achieve promising results in eight metrics covering user requires, execution trajectories and agent responses. Integrating with training, RISE achieves an average 35.28% improvement in Acctask (task completion) and 23.27% in Accintent (intent alignment), outperforming SOTA baselines by 1.20--42.09% and 1.17--54.93% respectively.
Abstract:Large language model (LLM)-integrated applications have become increasingly prevalent, yet face critical security vulnerabilities from prompt injection (PI) attacks. Defending against PI attacks faces two major issues: malicious instructions can be injected through diverse vectors, and injected instructions often lack clear semantic boundaries from the surrounding context, making them difficult to identify. To address these issues, we propose InstruCoT, a model enhancement method for PI defense that synthesizes diverse training data and employs instruction-level chain-of-thought fine-tuning, enabling LLMs to effectively identify and reject malicious instructions regardless of their source or position in the context. We evaluate InstruCoT across three critical dimensions: Behavior Deviation, Privacy Leakage, and Harmful Output. Experimental results across four LLMs demonstrate that InstruCoT significantly outperforms baselines in all dimensions while maintaining utility performance without degradation
Abstract:Harmful memes are ever-shifting in the Internet communities, which are difficult to analyze due to their type-shifting and temporal-evolving nature. Although these memes are shifting, we find that different memes may share invariant principles, i.e., the underlying design concept of malicious users, which can help us analyze why these memes are harmful. In this paper, we propose RepMD, an ever-shifting harmful meme detection method based on the design concept reproduction. We first refer to the attack tree to define the Design Concept Graph (DCG), which describes steps that people may take to design a harmful meme. Then, we derive the DCG from historical memes with design step reproduction and graph pruning. Finally, we use DCG to guide the Multimodal Large Language Model (MLLM) to detect harmful memes. The evaluation results show that RepMD achieves the highest accuracy with 81.1% and has slight accuracy decreases when generalized to type-shifting and temporal-evolving memes. Human evaluation shows that RepMD can improve the efficiency of human discovery on harmful memes, with 15$\sim$30 seconds per meme.




Abstract:Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.
Abstract:Large Language Models (LLMs) enhanced with Retrieval-Augmented Generation (RAG) have shown improved performance in generating accurate responses. However, the dependence on external knowledge bases introduces potential security vulnerabilities, particularly when these knowledge bases are publicly accessible and modifiable. Poisoning attacks on knowledge bases for RAG systems face two fundamental challenges: the injected malicious content must compete with multiple authentic documents retrieved by the retriever, and LLMs tend to trust retrieved information that aligns with their internal memorized knowledge. Previous works attempt to address these challenges by injecting multiple malicious documents, but such saturation attacks are easily detectable and impractical in real-world scenarios. To enable the effective single document poisoning attack, we propose AuthChain, a novel knowledge poisoning attack method that leverages Chain-of-Evidence theory and authority effect to craft more convincing poisoned documents. AuthChain generates poisoned content that establishes strong evidence chains and incorporates authoritative statements, effectively overcoming the interference from both authentic documents and LLMs' internal knowledge. Extensive experiments across six popular LLMs demonstrate that AuthChain achieves significantly higher attack success rates while maintaining superior stealthiness against RAG defense mechanisms compared to state-of-the-art baselines.




Abstract:Information theft attacks pose a significant risk to Large Language Model (LLM) tool-learning systems. Adversaries can inject malicious commands through compromised tools, manipulating LLMs to send sensitive information to these tools, which leads to potential privacy breaches. However, existing attack approaches are black-box oriented and rely on static commands that cannot adapt flexibly to the changes in user queries and the invocation chain of tools. It makes malicious commands more likely to be detected by LLM and leads to attack failure. In this paper, we propose AutoCMD, a dynamic attack comment generation approach for information theft attacks in LLM tool-learning systems. Inspired by the concept of mimicking the familiar, AutoCMD is capable of inferring the information utilized by upstream tools in the toolchain through learning on open-source systems and reinforcement with target system examples, thereby generating more targeted commands for information theft. The evaluation results show that AutoCMD outperforms the baselines with +13.2% $ASR_{Theft}$, and can be generalized to new tool-learning systems to expose their information leakage risks. We also design four defense methods to effectively protect tool-learning systems from the attack.




Abstract:Incorporating external knowledge into large language models (LLMs) has emerged as a promising approach to mitigate outdated knowledge and hallucination in LLMs. However, external knowledge is often imperfect. In addition to useful knowledge, external knowledge is rich in irrelevant or misinformation in the context that can impair the reliability of LLM responses. This paper focuses on LLMs' preferred external knowledge in imperfect contexts when handling multi-hop QA. Inspired by criminal procedural law's Chain of Evidence (CoE), we characterize that knowledge preferred by LLMs should maintain both relevance to the question and mutual support among knowledge pieces. Accordingly, we propose an automated CoE discrimination approach and explore LLMs' preferences from their effectiveness, faithfulness and robustness, as well as CoE's usability in a naive Retrieval-Augmented Generation (RAG) case. The evaluation on five LLMs reveals that CoE enhances LLMs through more accurate generation, stronger answer faithfulness, better robustness against knowledge conflict, and improved performance in a popular RAG case.




Abstract:Tool-calling has changed Large Language Model (LLM) applications by integrating external tools, significantly enhancing their functionality across diverse tasks. However, this integration also introduces new security vulnerabilities, particularly in the tool scheduling mechanisms of LLM, which have not been extensively studied. To fill this gap, we present ToolCommander, a novel framework designed to exploit vulnerabilities in LLM tool-calling systems through adversarial tool injection. Our framework employs a well-designed two-stage attack strategy. Firstly, it injects malicious tools to collect user queries, then dynamically updates the injected tools based on the stolen information to enhance subsequent attacks. These stages enable ToolCommander to execute privacy theft, launch denial-of-service attacks, and even manipulate business competition by triggering unscheduled tool-calling. Notably, the ASR reaches 91.67% for privacy theft and hits 100% for denial-of-service and unscheduled tool calling in certain cases. Our work demonstrates that these vulnerabilities can lead to severe consequences beyond simple misuse of tool-calling systems, underscoring the urgent need for robust defensive strategies to secure LLM Tool-calling systems.