Abstract:3D Referring Expression Segmentation (3D-RES) is dedicated to segmenting a specific instance within a 3D space based on a natural language description. However, current approaches are limited to segmenting a single target, restricting the versatility of the task. To overcome this limitation, we introduce Generalized 3D Referring Expression Segmentation (3D-GRES), which extends the capability to segment any number of instances based on natural language instructions. In addressing this broader task, we propose the Multi-Query Decoupled Interaction Network (MDIN), designed to break down multi-object segmentation tasks into simpler, individual segmentations. MDIN comprises two fundamental components: Text-driven Sparse Queries (TSQ) and Multi-object Decoupling Optimization (MDO). TSQ generates sparse point cloud features distributed over key targets as the initialization for queries. Meanwhile, MDO is tasked with assigning each target in multi-object scenarios to different queries while maintaining their semantic consistency. To adapt to this new task, we build a new dataset, namely Multi3DRes. Our comprehensive evaluations on this dataset demonstrate substantial enhancements over existing models, thus charting a new path for intricate multi-object 3D scene comprehension. The benchmark and code are available at https://github.com/sosppxo/MDIN.
Abstract:Recently, diffusion models have increasingly demonstrated their capabilities in vision understanding. By leveraging prompt-based learning to construct sentences, these models have shown proficiency in classification and visual grounding tasks. However, existing approaches primarily showcase their ability to perform sentence-level localization, leaving the potential for leveraging contextual information for phrase-level understanding largely unexplored. In this paper, we utilize Panoptic Narrative Grounding (PNG) as a proxy task to investigate this capability further. PNG aims to segment object instances mentioned by multiple noun phrases within a given narrative text. Specifically, we introduce the DiffPNG framework, a straightforward yet effective approach that fully capitalizes on the diffusion's architecture for segmentation by decomposing the process into a sequence of localization, segmentation, and refinement steps. The framework initially identifies anchor points using cross-attention mechanisms and subsequently performs segmentation with self-attention to achieve zero-shot PNG. Moreover, we introduce a refinement module based on SAM to enhance the quality of the segmentation masks. Our extensive experiments on the PNG dataset demonstrate that DiffPNG achieves strong performance in the zero-shot PNG task setting, conclusively proving the diffusion model's capability for context-aware, phrase-level understanding. Source code is available at \url{https://github.com/nini0919/DiffPNG}.
Abstract:In this paper, we introduce SemiRES, a semi-supervised framework that effectively leverages a combination of labeled and unlabeled data to perform RES. A significant hurdle in applying semi-supervised techniques to RES is the prevalence of noisy pseudo-labels, particularly at the boundaries of objects. SemiRES incorporates the Segment Anything Model (SAM), renowned for its precise boundary demarcation, to improve the accuracy of these pseudo-labels. Within SemiRES, we offer two alternative matching strategies: IoU-based Optimal Matching (IOM) and Composite Parts Integration (CPI). These strategies are designed to extract the most accurate masks from SAM's output, thus guiding the training of the student model with enhanced precision. In instances where a precise mask cannot be matched from the available candidates, we develop the Pixel-Wise Adjustment (PWA) strategy, guiding the student model's training directly by the pseudo-labels. Extensive experiments on three RES benchmarks--RefCOCO, RefCOCO+, and G-Ref reveal its superior performance compared to fully supervised methods. Remarkably, with only 1% labeled data, our SemiRES outperforms the supervised baseline by a large margin, e.g. +18.64% gains on RefCOCO val set. The project code is available at \url{https://github.com/nini0919/SemiRES}.
Abstract:Referring Remote Sensing Image Segmentation (RRSIS) is a new challenge that combines computer vision and natural language processing, delineating specific regions in aerial images as described by textual queries. Traditional Referring Image Segmentation (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery, leading to suboptimal segmentation results. To address these challenges, we introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS. RMSIN incorporates an Intra-scale Interaction Module (IIM) to effectively address the fine-grained detail required at multiple scales and a Cross-scale Interaction Module (CIM) for integrating these details coherently across the network. Furthermore, RMSIN employs an Adaptive Rotated Convolution (ARC) to account for the diverse orientations of objects, a novel contribution that significantly enhances segmentation accuracy. To assess the efficacy of RMSIN, we have curated an expansive dataset comprising 17,402 image-caption-mask triplets, which is unparalleled in terms of scale and variety. This dataset not only presents the model with a wide range of spatial and rotational scenarios but also establishes a stringent benchmark for the RRSIS task, ensuring a rigorous evaluation of performance. Our experimental evaluations demonstrate the exceptional performance of RMSIN, surpassing existing state-of-the-art models by a significant margin. All datasets and code are made available at https://github.com/Lsan2401/RMSIN.
Abstract:In recent times, automatic text-to-3D content creation has made significant progress, driven by the development of pretrained 2D diffusion models. Existing text-to-3D methods typically optimize the 3D representation to ensure that the rendered image aligns well with the given text, as evaluated by the pretrained 2D diffusion model. Nevertheless, a substantial domain gap exists between 2D images and 3D assets, primarily attributed to variations in camera-related attributes and the exclusive presence of foreground objects. Consequently, employing 2D diffusion models directly for optimizing 3D representations may lead to suboptimal outcomes. To address this issue, we present X-Dreamer, a novel approach for high-quality text-to-3D content creation that effectively bridges the gap between text-to-2D and text-to-3D synthesis. The key components of X-Dreamer are two innovative designs: Camera-Guided Low-Rank Adaptation (CG-LoRA) and Attention-Mask Alignment (AMA) Loss. CG-LoRA dynamically incorporates camera information into the pretrained diffusion models by employing camera-dependent generation for trainable parameters. This integration enhances the alignment between the generated 3D assets and the camera's perspective. AMA loss guides the attention map of the pretrained diffusion model using the binary mask of the 3D object, prioritizing the creation of the foreground object. This module ensures that the model focuses on generating accurate and detailed foreground objects. Extensive evaluations demonstrate the effectiveness of our proposed method compared to existing text-to-3D approaches. Our project webpage: https://xmuxiaoma666.github.io/Projects/X-Dreamer .
Abstract:Integrated sensing and communication (ISAC), which enables hardware, resources (e.g., spectra), and waveforms sharing, is becoming a key feature in future-generation communication systems. This paper investigates robust waveform design for ISAC systems when the underlying true communication channels (e.g. time-selective ones) are not accurately known. With uncertainties in nominal communication channel models, the nominally-estimated communication performance may be not achievable in practice; i.e., the communication performance of ISAC systems cannot be guaranteed. Therefore, we formulate robust waveform design problems by studying the worst-case channels and prove that the robustly-estimated performance is guaranteed to be attainable in real-world operation. As a consequence, the reliability of ISAC systems in terms of communication performance is improved. The robust waveform design problems are shown to be non-convex, non-differentiable, and high-dimensional, which cannot be solved using existing optimization techniques. Therefore, we develop a computationally-efficient and globally-optimal algorithm to solve them. Simulation results show that the robustly-estimated communication performance can be ensured to be practically reachable while the nominally-estimated performance cannot, which validates the value of robust design.
Abstract:Despite considerable progress, the advancement of Panoptic Narrative Grounding (PNG) remains hindered by costly annotations. In this paper, we introduce a novel Semi-Supervised Panoptic Narrative Grounding (SS-PNG) learning scheme, capitalizing on a smaller set of labeled image-text pairs and a larger set of unlabeled pairs to achieve competitive performance. Unlike visual segmentation tasks, PNG involves one pixel belonging to multiple open-ended nouns. As a result, existing multi-class based semi-supervised segmentation frameworks cannot be directly applied to this task. To address this challenge, we first develop a novel SS-PNG Network (SS-PNG-NW) tailored to the SS-PNG setting. We thoroughly investigate strategies such as Burn-In and data augmentation to determine the optimal generic configuration for the SS-PNG-NW. Additionally, to tackle the issue of imbalanced pseudo-label quality, we propose a Quality-Based Loss Adjustment (QLA) approach to adjust the semi-supervised objective, resulting in an enhanced SS-PNG-NW+. Employing our proposed QLA, we improve BCE Loss and Dice loss at pixel and mask levels, respectively. We conduct extensive experiments on PNG datasets, with our SS-PNG-NW+ demonstrating promising results comparable to fully-supervised models across all data ratios. Remarkably, our SS-PNG-NW+ outperforms fully-supervised models with only 30% and 50% supervision data, exceeding their performance by 0.8% and 1.1% respectively. This highlights the effectiveness of our proposed SS-PNG-NW+ in overcoming the challenges posed by limited annotations and enhancing the applicability of PNG tasks. The source code is available at https://github.com/nini0919/SSPNG.
Abstract:Panoptic Narrative Detection (PND) and Segmentation (PNS) are two challenging tasks that involve identifying and locating multiple targets in an image according to a long narrative description. In this paper, we propose a unified and effective framework called NICE that can jointly learn these two panoptic narrative recognition tasks. Existing visual grounding tasks use a two-branch paradigm, but applying this directly to PND and PNS can result in prediction conflict due to their intrinsic many-to-many alignment property. To address this, we introduce two cascading modules based on the barycenter of the mask, which are Coordinate Guided Aggregation (CGA) and Barycenter Driven Localization (BDL), responsible for segmentation and detection, respectively. By linking PNS and PND in series with the barycenter of segmentation as the anchor, our approach naturally aligns the two tasks and allows them to complement each other for improved performance. Specifically, CGA provides the barycenter as a reference for detection, reducing BDL's reliance on a large number of candidate boxes. BDL leverages its excellent properties to distinguish different instances, which improves the performance of CGA for segmentation. Extensive experiments demonstrate that NICE surpasses all existing methods by a large margin, achieving 4.1% for PND and 2.9% for PNS over the state-of-the-art. These results validate the effectiveness of our proposed collaborative learning strategy. The project of this work is made publicly available at https://github.com/Mr-Neko/NICE.
Abstract:The rising importance of 3D representation learning, pivotal in computer vision, autonomous driving, and robotics, is evident. However, a prevailing trend, which straightforwardly resorted to transferring 2D alignment strategies to the 3D domain, encounters three distinct challenges: (1) Information Degradation: This arises from the alignment of 3D data with mere single-view 2D images and generic texts, neglecting the need for multi-view images and detailed subcategory texts. (2) Insufficient Synergy: These strategies align 3D representations to image and text features individually, hampering the overall optimization for 3D models. (3) Underutilization: The fine-grained information inherent in the learned representations is often not fully exploited, indicating a potential loss in detail. To address these issues, we introduce JM3D, a comprehensive approach integrating point cloud, text, and image. Key contributions include the Structured Multimodal Organizer (SMO), enriching vision-language representation with multiple views and hierarchical text, and the Joint Multi-modal Alignment (JMA), combining language understanding with visual representation. Our advanced model, JM3D-LLM, marries 3D representation with large language models via efficient fine-tuning. Evaluations on ModelNet40 and ScanObjectNN establish JM3D's superiority. The superior performance of JM3D-LLM further underscores the effectiveness of our representation transfer approach. Our code and models are available at https://github.com/Mr-Neko/JM3D.
Abstract:In 3D Referring Expression Segmentation (3D-RES), the earlier approach adopts a two-stage paradigm, extracting segmentation proposals and then matching them with referring expressions. However, this conventional paradigm encounters significant challenges, most notably in terms of the generation of lackluster initial proposals and a pronounced deceleration in inference speed. Recognizing these limitations, we introduce an innovative end-to-end Superpoint-Text Matching Network (3D-STMN) that is enriched by dependency-driven insights. One of the keystones of our model is the Superpoint-Text Matching (STM) mechanism. Unlike traditional methods that navigate through instance proposals, STM directly correlates linguistic indications with their respective superpoints, clusters of semantically related points. This architectural decision empowers our model to efficiently harness cross-modal semantic relationships, primarily leveraging densely annotated superpoint-text pairs, as opposed to the more sparse instance-text pairs. In pursuit of enhancing the role of text in guiding the segmentation process, we further incorporate the Dependency-Driven Interaction (DDI) module to deepen the network's semantic comprehension of referring expressions. Using the dependency trees as a beacon, this module discerns the intricate relationships between primary terms and their associated descriptors in expressions, thereby elevating both the localization and segmentation capacities of our model. Comprehensive experiments on the ScanRefer benchmark reveal that our model not only set new performance standards, registering an mIoU gain of 11.7 points but also achieve a staggering enhancement in inference speed, surpassing traditional methods by 95.7 times. The code and models are available at https://github.com/sosppxo/3D-STMN.