Abstract:Large pre-trained vision-language models (VLMs), such as CLIP, demonstrate impressive generalization but remain highly vulnerable to adversarial examples (AEs). Previous work has explored robust text prompts through adversarial training, achieving some improvement in both robustness and generalization. However, they primarily rely on singlegradient direction perturbations (e.g., PGD) to generate AEs, which lack diversity, resulting in limited improvement in adversarial robustness. To address these limitations, we propose an evolution-based region adversarial prompt tuning method called ER-APT, which combines gradient methods with genetic evolution to generate more diverse and challenging AEs. In each training iteration, we first generate AEs using traditional gradient-based methods. Subsequently, a genetic evolution mechanism incorporating selection, mutation, and crossover is applied to optimize the AEs, ensuring a broader and more aggressive perturbation distribution.The final evolved AEs are used for prompt tuning, achieving region-based adversarial optimization instead of conventional single-point adversarial prompt tuning. We also propose a dynamic loss weighting method to adjust prompt learning efficiency for accuracy and robustness. Experimental evaluations on various benchmark datasets demonstrate the superiority of our proposed method, outperforming stateof-the-art APT methods. The code is released at https://github.com/jiaxiaojunQAQ/ER-APT.
Abstract:Query-based methods with dense features have demonstrated remarkable success in 3D object detection tasks. However, the computational demands of these models, particularly with large image sizes and multiple transformer layers, pose significant challenges for efficient running on edge devices. Existing pruning and distillation methods either need retraining or are designed for ViT models, which are hard to migrate to 3D detectors. To address this issue, we propose a zero-shot runtime pruning method for transformer decoders in 3D object detection models. The method, termed tgGBC (trim keys gradually Guided By Classification scores), systematically trims keys in transformer modules based on their importance. We expand the classification score to multiply it with the attention map to get the importance score of each key and then prune certain keys after each transformer layer according to their importance scores. Our method achieves a 1.99x speedup in the transformer decoder of the latest ToC3D model, with only a minimal performance loss of less than 1%. Interestingly, for certain models, our method even enhances their performance. Moreover, we deploy 3D detectors with tgGBC on an edge device, further validating the effectiveness of our method. The code can be found at https://github.com/iseri27/tg_gbc.
Abstract:Large Language Model based multi-agent systems are revolutionizing autonomous communication and collaboration, yet they remain vulnerable to security threats like unauthorized access and data breaches. To address this, we introduce AgentSafe, a novel framework that enhances MAS security through hierarchical information management and memory protection. AgentSafe classifies information by security levels, restricting sensitive data access to authorized agents. AgentSafe incorporates two components: ThreatSieve, which secures communication by verifying information authority and preventing impersonation, and HierarCache, an adaptive memory management system that defends against unauthorized access and malicious poisoning, representing the first systematic defense for agent memory. Experiments across various LLMs show that AgentSafe significantly boosts system resilience, achieving defense success rates above 80% under adversarial conditions. Additionally, AgentSafe demonstrates scalability, maintaining robust performance as agent numbers and information complexity grow. Results underscore effectiveness of AgentSafe in securing MAS and its potential for real-world application.
Abstract:The advent of local continuous image function (LIIF) has garnered significant attention for arbitrary-scale super-resolution (SR) techniques. However, while the vulnerabilities of fixed-scale SR have been assessed, the robustness of continuous representation-based arbitrary-scale SR against adversarial attacks remains an area warranting further exploration. The elaborately designed adversarial attacks for fixed-scale SR are scale-dependent, which will cause time-consuming and memory-consuming problems when applied to arbitrary-scale SR. To address this concern, we propose a simple yet effective ``scale-invariant'' SR adversarial attack method with good transferability, termed SIAGT. Specifically, we propose to construct resource-saving attacks by exploiting finite discrete points of continuous representation. In addition, we formulate a coordinate-dependent loss to enhance the cross-model transferability of the attack. The attack can significantly deteriorate the SR images while introducing imperceptible distortion to the targeted low-resolution (LR) images. Experiments carried out on three popular LIIF-based SR approaches and four classical SR datasets show remarkable attack performance and transferability of SIAGT.
Abstract:Diffusion models (DMs) have revolutionized data generation, particularly in text-to-image (T2I) synthesis. However, the widespread use of personalized generative models raises significant concerns regarding privacy violations and copyright infringement. To address these issues, researchers have proposed adversarial perturbation-based protection techniques. However, these methods have notable limitations, including insufficient robustness against data transformations and the inability to fully eliminate identifiable features of protected objects in the generated output. In this paper, we introduce PersGuard, a novel backdoor-based approach that prevents malicious personalization of specific images. Unlike traditional adversarial perturbation methods, PersGuard implant backdoor triggers into pre-trained T2I models, preventing the generation of customized outputs for designated protected images while allowing normal personalization for unprotected ones. Unfortunately, existing backdoor methods for T2I diffusion models fail to be applied to personalization scenarios due to the different backdoor objectives and the potential backdoor elimination during downstream fine-tuning processes. To address these, we propose three novel backdoor objectives specifically designed for personalization scenarios, coupled with backdoor retention loss engineered to resist downstream fine-tuning. These components are integrated into a unified optimization framework. Extensive experimental evaluations demonstrate PersGuard's effectiveness in preserving data privacy, even under challenging conditions including gray-box settings, multi-object protection, and facial identity scenarios. Our method significantly outperforms existing techniques, offering a more robust solution for privacy and copyright protection.
Abstract:Direct Preference Optimization (DPO) has shown effectiveness in aligning multi-modal large language models (MLLM) with human preferences. However, existing methods exhibit an imbalanced responsiveness to the data of varying hardness, tending to overfit on the easy-to-distinguish data while underfitting on the hard-to-distinguish data. In this paper, we propose Data- and Model-aware DPO (DAMO) to dynamically adjust the optimization process from two key aspects: (1) a data-aware strategy that incorporates data hardness, and (2) a model-aware strategy that integrates real-time model responses. By combining the two strategies, DAMO enables the model to effectively adapt to data with varying levels of hardness. Extensive experiments on five benchmarks demonstrate that DAMO not only significantly enhances the trustworthiness, but also improves the effectiveness over general tasks. For instance, on the Object HalBench, our DAMO-7B reduces response-level and mentioned-level hallucination by 90.0% and 95.3%, respectively, surpassing the performance of GPT-4V.
Abstract:Text-to-image (T2I) models have been shown to be vulnerable to misuse, particularly in generating not-safe-for-work (NSFW) content, raising serious ethical concerns. In this work, we present PromptGuard, a novel content moderation technique that draws inspiration from the system prompt mechanism in large language models (LLMs) for safety alignment. Unlike LLMs, T2I models lack a direct interface for enforcing behavioral guidelines. Our key idea is to optimize a safety soft prompt that functions as an implicit system prompt within the T2I model's textual embedding space. This universal soft prompt (P*) directly moderates NSFW inputs, enabling safe yet realistic image generation without altering the inference efficiency or requiring proxy models. Extensive experiments across three datasets demonstrate that PromptGuard effectively mitigates NSFW content generation while preserving high-quality benign outputs. PromptGuard achieves 7.8 times faster than prior content moderation methods, surpassing eight state-of-the-art defenses with an optimal unsafe ratio down to 5.84%.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks. LLMs continue to be vulnerable to external threats, particularly Denial-of-Service (DoS) attacks. Specifically, LLM-DoS attacks aim to exhaust computational resources and block services. However, prior works tend to focus on performing white-box attacks, overlooking black-box settings. In this work, we propose an automated algorithm designed for black-box LLMs, called Auto-Generation for LLM-DoS Attack (AutoDoS). AutoDoS introduces DoS Attack Tree and optimizes the prompt node coverage to enhance effectiveness under black-box conditions. Our method can bypass existing defense with enhanced stealthiness via semantic improvement of prompt nodes. Furthermore, we reveal that implanting Length Trojan in Basic DoS Prompt aids in achieving higher attack efficacy. Experimental results show that AutoDoS amplifies service response latency by over 250 $\times \uparrow$, leading to severe resource consumption in terms of GPU utilization and memory usage. Our code is available at \url{https://github.com/shuita2333/AutoDoS}.
Abstract:Incorporating external knowledge into large language models (LLMs) has emerged as a promising approach to mitigate outdated knowledge and hallucination in LLMs. However, external knowledge is often imperfect. In addition to useful knowledge, external knowledge is rich in irrelevant or misinformation in the context that can impair the reliability of LLM responses. This paper focuses on LLMs' preferred external knowledge in imperfect contexts when handling multi-hop QA. Inspired by criminal procedural law's Chain of Evidence (CoE), we characterize that knowledge preferred by LLMs should maintain both relevance to the question and mutual support among knowledge pieces. Accordingly, we propose an automated CoE discrimination approach and explore LLMs' preferences from their effectiveness, faithfulness and robustness, as well as CoE's usability in a naive Retrieval-Augmented Generation (RAG) case. The evaluation on five LLMs reveals that CoE enhances LLMs through more accurate generation, stronger answer faithfulness, better robustness against knowledge conflict, and improved performance in a popular RAG case.
Abstract:LVLMs are widely used but vulnerable to illegal or unethical responses under jailbreak attacks. To ensure their responsible deployment in real-world applications, it is essential to understand their vulnerabilities. There are four main issues in current work: single-round attack limitation, insufficient dual-modal synergy, poor transferability to black-box models, and reliance on prompt engineering. To address these limitations, we propose BAMBA, a bimodal adversarial multi-round black-box jailbreak attacker for LVLMs. We first use an image optimizer to learn malicious features from a harmful corpus, then deepen these features through a bimodal optimizer through text-image interaction, generating adversarial text and image for jailbreak. Experiments on various LVLMs and datasets demonstrate that BAMBA outperforms other baselines.