Abstract:Large Language Models (LLMs) demonstrate outstanding performance in their reservoir of knowledge and understanding capabilities, but they have also been shown to be prone to illegal or unethical reactions when subjected to jailbreak attacks. To ensure their responsible deployment in critical applications, it is crucial to understand the safety capabilities and vulnerabilities of LLMs. Previous works mainly focus on jailbreak in single-round dialogue, overlooking the potential jailbreak risks in multi-round dialogues, which are a vital way humans interact with and extract information from LLMs. Some studies have increasingly concentrated on the risks associated with jailbreak in multi-round dialogues. These efforts typically involve the use of manually crafted templates or prompt engineering techniques. However, due to the inherent complexity of multi-round dialogues, their jailbreak performance is limited. To solve this problem, we propose a novel multi-round dialogue jailbreaking agent, emphasizing the importance of stealthiness in identifying and mitigating potential threats to human values posed by LLMs. We propose a risk decomposition strategy that distributes risks across multiple rounds of queries and utilizes psychological strategies to enhance attack strength. Extensive experiments show that our proposed method surpasses other attack methods and achieves state-of-the-art attack success rate. We will make the corresponding code and dataset available for future research. The code will be released soon.
Abstract:Recently, Text-to-Image(T2I) models have achieved remarkable success in image generation and editing, yet these models still have many potential issues, particularly in generating inappropriate or Not-Safe-For-Work(NSFW) content. Strengthening attacks and uncovering such vulnerabilities can advance the development of reliable and practical T2I models. Most of the previous works treat T2I models as white-box systems, using gradient optimization to generate adversarial prompts. However, accessing the model's gradient is often impossible in real-world scenarios. Moreover, existing defense methods, those using gradient masking, are designed to prevent attackers from obtaining accurate gradient information. While some black-box jailbreak attacks have been explored, these typically rely on simply replacing sensitive words, leading to suboptimal attack performance. To address this issue, we introduce a two-stage query-based black-box attack method utilizing random search. In the first stage, we establish a preliminary prompt by maximizing the semantic similarity between the adversarial and target harmful prompts. In the second stage, we use this initial prompt to refine our approach, creating a detailed adversarial prompt aimed at jailbreaking and maximizing the similarity in image features between the images generated from this prompt and those produced by the target harmful prompt. Extensive experiments validate the effectiveness of our method in attacking the latest prompt checkers, post-hoc image checkers, securely trained T2I models, and online commercial models.
Abstract:Fast Adversarial Training (FAT) not only improves the model robustness but also reduces the training cost of standard adversarial training. However, fast adversarial training often suffers from Catastrophic Overfitting (CO), which results in poor robustness performance. Catastrophic Overfitting describes the phenomenon of a sudden and significant decrease in robust accuracy during the training of fast adversarial training. Many effective techniques have been developed to prevent Catastrophic Overfitting and improve the model robustness from different perspectives. However, these techniques adopt inconsistent training settings and require different training costs, i.e, training time and memory costs, leading to unfair comparisons. In this paper, we conduct a comprehensive study of over 10 fast adversarial training methods in terms of adversarial robustness and training costs. We revisit the effectiveness and efficiency of fast adversarial training techniques in preventing Catastrophic Overfitting from the perspective of model local nonlinearity and propose an effective Lipschitz regularization method for fast adversarial training. Furthermore, we explore the effect of data augmentation and weight averaging in fast adversarial training and propose a simple yet effective auto weight averaging method to improve robustness further. By assembling these techniques, we propose a FGSM-based fast adversarial training method equipped with Lipschitz regularization and Auto Weight averaging, abbreviated as FGSM-LAW. Experimental evaluations on four benchmark databases demonstrate the superiority of the proposed method over state-of-the-art fast adversarial training methods and the advanced standard adversarial training methods.
Abstract:Developing a practically-robust automatic speech recognition (ASR) is challenging since the model should not only maintain the original performance on clean samples, but also achieve consistent efficacy under small volume perturbations and large domain shifts. To address this problem, we propose a novel WavAugment Guided Phoneme Adversarial Training (wapat). wapat use adversarial examples in phoneme space as augmentation to make the model invariant to minor fluctuations in phoneme representation and preserve the performance on clean samples. In addition, wapat utilizes the phoneme representation of augmented samples to guide the generation of adversaries, which helps to find more stable and diverse gradient-directions, resulting in improved generalization. Extensive experiments demonstrate the effectiveness of wapat on End-to-end Speech Challenge Benchmark (ESB). Notably, SpeechLM-wapat outperforms the original model by 6.28% WER reduction on ESB, achieving the new state-of-the-art.
Abstract:Adversarial Training (AT), which is commonly accepted as one of the most effective approaches defending against adversarial examples, can largely harm the standard performance, thus has limited usefulness on industrial-scale production and applications. Surprisingly, this phenomenon is totally opposite in Natural Language Processing (NLP) task, where AT can even benefit for generalization. We notice the merit of AT in NLP tasks could derive from the discrete and symbolic input space. For borrowing the advantage from NLP-style AT, we propose Discrete Adversarial Training (DAT). DAT leverages VQGAN to reform the image data to discrete text-like inputs, i.e. visual words. Then it minimizes the maximal risk on such discrete images with symbolic adversarial perturbations. We further give an explanation from the perspective of distribution to demonstrate the effectiveness of DAT. As a plug-and-play technique for enhancing the visual representation, DAT achieves significant improvement on multiple tasks including image classification, object detection and self-supervised learning. Especially, the model pre-trained with Masked Auto-Encoding (MAE) and fine-tuned by our DAT without extra data can get 31.40 mCE on ImageNet-C and 32.77% top-1 accuracy on Stylized-ImageNet, building the new state-of-the-art. The code will be available at https://github.com/alibaba/easyrobust.
Abstract:Human can easily recognize visual objects with lost information: even losing most details with only contour reserved, e.g. cartoon. However, in terms of visual perception of Deep Neural Networks (DNNs), the ability for recognizing abstract objects (visual objects with lost information) is still a challenge. In this work, we investigate this issue from an adversarial viewpoint: will the performance of DNNs decrease even for the images only losing a little information? Towards this end, we propose a novel adversarial attack, named \textit{AdvDrop}, which crafts adversarial examples by dropping existing information of images. Previously, most adversarial attacks add extra disturbing information on clean images explicitly. Opposite to previous works, our proposed work explores the adversarial robustness of DNN models in a novel perspective by dropping imperceptible details to craft adversarial examples. We demonstrate the effectiveness of \textit{AdvDrop} by extensive experiments, and show that this new type of adversarial examples is more difficult to be defended by current defense systems.
Abstract:Recent advances on Vision Transformer (ViT) and its improved variants have shown that self-attention-based networks surpass traditional Convolutional Neural Networks (CNNs) in most vision tasks. However, existing ViTs focus on the standard accuracy and computation cost, lacking the investigation of the intrinsic influence on model robustness and generalization. In this work, we conduct systematic evaluation on components of ViTs in terms of their impact on robustness to adversarial examples, common corruptions and distribution shifts. We find some components can be harmful to robustness. By using and combining robust components as building blocks of ViTs, we propose Robust Vision Transformer (RVT), which is a new vision transformer and has superior performance with strong robustness. We further propose two new plug-and-play techniques called position-aware attention scaling and patch-wise augmentation to augment our RVT, which we abbreviate as RVT*. The experimental results on ImageNet and six robustness benchmarks show the advanced robustness and generalization ability of RVT compared with previous ViTs and state-of-the-art CNNs. Furthermore, RVT-S* also achieves Top-1 rank on multiple robustness leaderboards including ImageNet-C and ImageNet-Sketch. The code will be available at \url{https://git.io/Jswdk}.
Abstract:Though it is well known that the performance of deep neural networks (DNNs) degrades under certain light conditions, there exists no study on the threats of light beams emitted from some physical source as adversarial attacker on DNNs in a real-world scenario. In this work, we show by simply using a laser beam that DNNs are easily fooled. To this end, we propose a novel attack method called Adversarial Laser Beam ($AdvLB$), which enables manipulation of laser beam's physical parameters to perform adversarial attack. Experiments demonstrate the effectiveness of our proposed approach in both digital- and physical-settings. We further empirically analyze the evaluation results and reveal that the proposed laser beam attack may lead to some interesting prediction errors of the state-of-the-art DNNs. We envisage that the proposed $AdvLB$ method enriches the current family of adversarial attacks and builds the foundation for future robustness studies for light.
Abstract:Deep neural networks (DNNs) are known to be vulnerable to adversarial examples. Existing works have mostly focused on either digital adversarial examples created via small and imperceptible perturbations, or physical-world adversarial examples created with large and less realistic distortions that are easily identified by human observers. In this paper, we propose a novel approach, called Adversarial Camouflage (\emph{AdvCam}), to craft and camouflage physical-world adversarial examples into natural styles that appear legitimate to human observers. Specifically, \emph{AdvCam} transfers large adversarial perturbations into customized styles, which are then "hidden" on-target object or off-target background. Experimental evaluation shows that, in both digital and physical-world scenarios, adversarial examples crafted by \emph{AdvCam} are well camouflaged and highly stealthy, while remaining effective in fooling state-of-the-art DNN image classifiers. Hence, \emph{AdvCam} is a flexible approach that can help craft stealthy attacks to evaluate the robustness of DNNs. \emph{AdvCam} can also be used to protect private information from being detected by deep learning systems.