Abstract:Large Language Models (LLMs) often struggle to align their responses with objective facts, resulting in the issue of factual hallucinations, which can be difficult to detect and mislead users without relevant knowledge. While post-training techniques have been employed to mitigate the issue, existing methods usually suffer from poor generalization and trade-offs in different capabilities. In this paper, we propose to address it by directly augmenting LLM's fundamental ability to precisely leverage its existing memory--the knowledge acquired from pre-training data. We introduce self-memory alignment (SMA), which fine-tunes the model on self-generated responses to precise and simple factual questions through preference optimization. Furthermore, we construct FactualBench, a comprehensive and precise factual QA dataset containing 181k Chinese data spanning 21 domains, to facilitate both evaluation and training. Extensive experiments show that SMA significantly improves LLMs' overall performance, with consistent enhancement across various benchmarks concerning factuality, as well as helpfulness and comprehensive skills.
Abstract:Generalized Category Discovery (GCD) is a practical and challenging open-world task that aims to recognize both known and novel categories in unlabeled data using limited labeled data from known categories. Due to the lack of supervision, previous GCD methods face significant challenges, such as difficulty in rectifying errors for confusing instances, and inability to effectively uncover and leverage the semantic meanings of discovered clusters. Therefore, additional annotations are usually required for real-world applicability. However, human annotation is extremely costly and inefficient. To address these issues, we propose GLEAN, a unified framework for generalized category discovery that actively learns from diverse and quality-enhanced LLM feedback. Our approach leverages three different types of LLM feedback to: (1) improve instance-level contrastive features, (2) generate category descriptions, and (3) align uncertain instances with LLM-selected category descriptions. Extensive experiments demonstrate the superior performance of \MethodName over state-of-the-art models across diverse datasets, metrics, and supervision settings. Our code is available at https://github.com/amazon-science/Glean.
Abstract:The spatio-temporal relationship between the pixels of a video carries critical information for low-level 4D perception. A single model that reasons about it should be able to solve several such tasks well. Yet, most state-of-the-art methods rely on architectures specialized for the task at hand. We present L4P (pronounced "LAP"), a feedforward, general-purpose architecture that solves low-level 4D perception tasks in a unified framework. L4P combines a ViT-based backbone with per-task heads that are lightweight and therefore do not require extensive training. Despite its general and feedforward formulation, our method matches or surpasses the performance of existing specialized methods on both dense tasks, such as depth or optical flow estimation, and sparse tasks, such as 2D/3D tracking. Moreover, it solves all those tasks at once in a time comparable to that of individual single-task methods.
Abstract:Faithfulness evaluators based on large language models (LLMs) are often fooled by the fluency of the text and struggle with identifying errors in the summaries. We propose an approach to summary faithfulness evaluation in which multiple LLM-based agents are assigned initial stances (regardless of what their belief might be) and forced to come up with a reason to justify the imposed belief, thus engaging in a multi-round debate to reach an agreement. The uniformly distributed initial assignments result in a greater diversity of stances leading to more meaningful debates and ultimately more errors identified. Furthermore, by analyzing the recent faithfulness evaluation datasets, we observe that naturally, it is not always the case for a summary to be either faithful to the source document or not. We therefore introduce a new dimension, ambiguity, and a detailed taxonomy to identify such special cases. Experiments demonstrate our approach can help identify ambiguities, and have even a stronger performance on non-ambiguous summaries.
Abstract:Unsupervised reinforcement learning (RL) aims to pre-train agents by exploring states or skills in reward-free environments, facilitating the adaptation to downstream tasks. However, existing methods often overlook the fitting ability of pre-trained policies and struggle to handle the heterogeneous pre-training data, which are crucial for achieving efficient exploration and fast fine-tuning. To address this gap, we propose Exploratory Diffusion Policy (EDP), which leverages the strong expressive ability of diffusion models to fit the explored data, both boosting exploration and obtaining an efficient initialization for downstream tasks. Specifically, we estimate the distribution of collected data in the replay buffer with the diffusion policy and propose a score intrinsic reward, encouraging the agent to explore unseen states. For fine-tuning the pre-trained diffusion policy on downstream tasks, we provide both theoretical analyses and practical algorithms, including an alternating method of Q function optimization and diffusion policy distillation. Extensive experiments demonstrate the effectiveness of EDP in efficient exploration during pre-training and fast adaptation during fine-tuning.
Abstract:Recent studies have revealed the vulnerability of Large Language Models (LLMs) to adversarial attacks, where the adversary crafts specific input sequences to induce harmful, violent, private, or incorrect outputs. Although various defenses have been proposed, they have not been evaluated by strong adaptive attacks, leaving the worst-case robustness of LLMs still intractable. By developing a stronger white-box attack, our evaluation results indicate that most typical defenses achieve nearly 0\% robustness.To solve this, we propose \textit{DiffTextPure}, a general defense that diffuses the (adversarial) input prompt using any pre-defined smoothing distribution, and purifies the diffused input using a pre-trained language model. Theoretically, we derive tight robustness lower bounds for all smoothing distributions using Fractal Knapsack or 0-1 Knapsack solvers. Under this framework, we certify the robustness of a specific case -- smoothing LLMs using a uniform kernel -- against \textit{any possible attack} with an average $\ell_0$ perturbation of 2.02 or an average suffix length of 6.41.
Abstract:Classifier-Free Guidance (CFG) has been a default technique in various visual generative models, yet it requires inference from both conditional and unconditional models during sampling. We propose to build visual models that are free from guided sampling. The resulting algorithm, Guidance-Free Training (GFT), matches the performance of CFG while reducing sampling to a single model, halving the computational cost. Unlike previous distillation-based approaches that rely on pretrained CFG networks, GFT enables training directly from scratch. GFT is simple to implement. It retains the same maximum likelihood objective as CFG and differs mainly in the parameterization of conditional models. Implementing GFT requires only minimal modifications to existing codebases, as most design choices and hyperparameters are directly inherited from CFG. Our extensive experiments across five distinct visual models demonstrate the effectiveness and versatility of GFT. Across domains of diffusion, autoregressive, and masked-prediction modeling, GFT consistently achieves comparable or even lower FID scores, with similar diversity-fidelity trade-offs compared with CFG baselines, all while being guidance-free. Code will be available at https://github.com/thu-ml/GFT.
Abstract:Large models have shown generalization across datasets for many low-level vision tasks, like depth estimation, but no such general models exist for scene flow. Even though scene flow has wide potential use, it is not used in practice because current predictive models do not generalize well. We identify three key challenges and propose solutions for each.First, we create a method that jointly estimates geometry and motion for accurate prediction. Second, we alleviate scene flow data scarcity with a data recipe that affords us 1M annotated training samples across diverse synthetic scenes. Third, we evaluate different parameterizations for scene flow prediction and adopt a natural and effective parameterization. Our resulting model outperforms existing methods as well as baselines built on large-scale models in terms of 3D end-point error, and shows zero-shot generalization to the casually captured videos from DAVIS and the robotic manipulation scenes from RoboTAP. Overall, our approach makes scene flow prediction more practical in-the-wild.
Abstract:Adversarial patches, often used to provide physical stealth protection for critical assets and assess perception algorithm robustness, usually neglect the need for visual harmony with the background environment, making them easily noticeable. Moreover, existing methods primarily concentrate on improving attack performance, disregarding the intricate dynamics of adversarial patch elements. In this work, we introduce the Camouflaged Adversarial Pattern Generator (CAPGen), a novel approach that leverages specific base colors from the surrounding environment to produce patches that seamlessly blend with their background for superior visual stealthiness while maintaining robust adversarial performance. We delve into the influence of both patterns (i.e., color-agnostic texture information) and colors on the effectiveness of attacks facilitated by patches, discovering that patterns exert a more pronounced effect on performance than colors. Based on these findings, we propose a rapid generation strategy for adversarial patches. This involves updating the colors of high-performance adversarial patches to align with those of the new environment, ensuring visual stealthiness without compromising adversarial impact. This paper is the first to comprehensively examine the roles played by patterns and colors in the context of adversarial patches.
Abstract:Vision Language Models (VLMs) have exhibited remarkable generalization capabilities, yet their robustness in dynamic real-world scenarios remains largely unexplored. To systematically evaluate VLMs' robustness to real-world 3D variations, we propose AdvDreamer, the first framework that generates physically reproducible adversarial 3D transformation (Adv-3DT) samples from single-view images. AdvDreamer integrates advanced generative techniques with two key innovations and aims to characterize the worst-case distributions of 3D variations from natural images. To ensure adversarial effectiveness and method generality, we introduce an Inverse Semantic Probability Objective that executes adversarial optimization on fundamental vision-text alignment spaces, which can be generalizable across different VLM architectures and downstream tasks. To mitigate the distribution discrepancy between generated and real-world samples while maintaining physical reproducibility, we design a Naturalness Reward Model that provides regularization feedback during adversarial optimization, preventing convergence towards hallucinated and unnatural elements. Leveraging AdvDreamer, we establish MM3DTBench, the first VQA dataset for benchmarking VLMs' 3D variations robustness. Extensive evaluations on representative VLMs with diverse architectures highlight that 3D variations in the real world may pose severe threats to model performance across various tasks.