Abstract:PDE-Constrained Optimization (PDECO) problems can be accelerated significantly by employing gradient-based methods with surrogate models like neural operators compared to traditional numerical solvers. However, this approach faces two key challenges: (1) **Data inefficiency**: Lack of efficient data sampling and effective training for neural operators, particularly for optimization purpose. (2) **Instability**: High risk of optimization derailment due to inaccurate neural operator predictions and gradients. To address these challenges, we propose a novel framework: (1) **Optimization-oriented training**: we leverage data from full steps of traditional optimization algorithms and employ a specialized training method for neural operators. (2) **Enhanced derivative learning**: We introduce a *Virtual-Fourier* layer to enhance derivative learning within the neural operator, a crucial aspect for gradient-based optimization. (3) **Hybrid optimization**: We implement a hybrid approach that integrates neural operators with numerical solvers, providing robust regularization for the optimization process. Our extensive experimental results demonstrate the effectiveness of our model in accurately learning operators and their derivatives. Furthermore, our hybrid optimization approach exhibits robust convergence.
Abstract:Ensuring the safety and alignment of Large Language Models is a significant challenge with their growing integration into critical applications and societal functions. While prior research has primarily focused on jailbreak attacks, less attention has been given to non-adversarial failures that subtly emerge during benign interactions. We introduce secondary risks a novel class of failure modes marked by harmful or misleading behaviors during benign prompts. Unlike adversarial attacks, these risks stem from imperfect generalization and often evade standard safety mechanisms. To enable systematic evaluation, we introduce two risk primitives verbose response and speculative advice that capture the core failure patterns. Building on these definitions, we propose SecLens, a black-box, multi-objective search framework that efficiently elicits secondary risk behaviors by optimizing task relevance, risk activation, and linguistic plausibility. To support reproducible evaluation, we release SecRiskBench, a benchmark dataset of 650 prompts covering eight diverse real-world risk categories. Experimental results from extensive evaluations on 16 popular models demonstrate that secondary risks are widespread, transferable across models, and modality independent, emphasizing the urgent need for enhanced safety mechanisms to address benign yet harmful LLM behaviors in real-world deployments.
Abstract:Recent advancements in multimodal large language models for video understanding (videoLLMs) have improved their ability to process dynamic multimodal data. However, trustworthiness challenges factual inaccuracies, harmful content, biases, hallucinations, and privacy risks, undermine reliability due to video data's spatiotemporal complexities. This study introduces Trust-videoLLMs, a comprehensive benchmark evaluating videoLLMs across five dimensions: truthfulness, safety, robustness, fairness, and privacy. Comprising 30 tasks with adapted, synthetic, and annotated videos, the framework assesses dynamic visual scenarios, cross-modal interactions, and real-world safety concerns. Our evaluation of 23 state-of-the-art videoLLMs (5 commercial,18 open-source) reveals significant limitations in dynamic visual scene understanding and cross-modal perturbation resilience. Open-source videoLLMs show occasional truthfulness advantages but inferior overall credibility compared to commercial models, with data diversity outperforming scale effects. These findings highlight the need for advanced safety alignment to enhance capabilities. Trust-videoLLMs provides a publicly available, extensible toolbox for standardized trustworthiness assessments, bridging the gap between accuracy-focused benchmarks and critical demands for robustness, safety, fairness, and privacy.
Abstract:Recent studies have revealed that the loss landscape of large language models resembles a basin, within which the models perform nearly identically, and outside of which they lose all their capabilities. In this work, we conduct further studies on the loss landscape of large language models. We discover that pre-training creates a "basic capability" basin, and subsequent fine-tuning creates "specific capability" basins (e.g., math, safety, coding) within the basic capability basin. We further investigate two types of loss landscapes: the most-case landscape (i.e., the landscape along most directions) and the worst-case landscape (i.e., the landscape along the worst direction). We argue that as long as benign fine-tuning remains within the most-case basin, it will not compromise previous capabilities. Similarly, any fine-tuning (including the adversarial one) that stays within the worst-case basin would not compromise previous capabilities. Finally, we theoretically demonstrate that the size of the most-case basin can bound the size of the worst-case basin and the robustness with respect to input perturbations. We also show that, due to the over-parameterization property of current large language models, one can easily enlarge the basins by five times.
Abstract:Visual augmentation has become a crucial technique for enhancing the visual robustness of imitation learning. However, existing methods are often limited by prerequisites such as camera calibration or the need for controlled environments (e.g., green screen setups). In this work, we introduce RoboEngine, the first plug-and-play visual robot data augmentation toolkit. For the first time, users can effortlessly generate physics- and task-aware robot scenes with just a few lines of code. To achieve this, we present a novel robot scene segmentation dataset, a generalizable high-quality robot segmentation model, and a fine-tuned background generation model, which together form the core components of the out-of-the-box toolkit. Using RoboEngine, we demonstrate the ability to generalize robot manipulation tasks across six entirely new scenes, based solely on demonstrations collected from a single scene, achieving a more than 200% performance improvement compared to the no-augmentation baseline. All datasets, model weights, and the toolkit will be publicly released.
Abstract:Large Language Models (LLMs) often struggle to align their responses with objective facts, resulting in the issue of factual hallucinations, which can be difficult to detect and mislead users without relevant knowledge. While post-training techniques have been employed to mitigate the issue, existing methods usually suffer from poor generalization and trade-offs in different capabilities. In this paper, we propose to address it by directly augmenting LLM's fundamental ability to precisely leverage its existing memory--the knowledge acquired from pre-training data. We introduce self-memory alignment (SMA), which fine-tunes the model on self-generated responses to precise and simple factual questions through preference optimization. Furthermore, we construct FactualBench, a comprehensive and precise factual QA dataset containing 181k Chinese data spanning 21 domains, to facilitate both evaluation and training. Extensive experiments show that SMA significantly improves LLMs' overall performance, with consistent enhancement across various benchmarks concerning factuality, as well as helpfulness and comprehensive skills.
Abstract:Generalized Category Discovery (GCD) is a practical and challenging open-world task that aims to recognize both known and novel categories in unlabeled data using limited labeled data from known categories. Due to the lack of supervision, previous GCD methods face significant challenges, such as difficulty in rectifying errors for confusing instances, and inability to effectively uncover and leverage the semantic meanings of discovered clusters. Therefore, additional annotations are usually required for real-world applicability. However, human annotation is extremely costly and inefficient. To address these issues, we propose GLEAN, a unified framework for generalized category discovery that actively learns from diverse and quality-enhanced LLM feedback. Our approach leverages three different types of LLM feedback to: (1) improve instance-level contrastive features, (2) generate category descriptions, and (3) align uncertain instances with LLM-selected category descriptions. Extensive experiments demonstrate the superior performance of \MethodName over state-of-the-art models across diverse datasets, metrics, and supervision settings. Our code is available at https://github.com/amazon-science/Glean.
Abstract:The spatio-temporal relationship between the pixels of a video carries critical information for low-level 4D perception. A single model that reasons about it should be able to solve several such tasks well. Yet, most state-of-the-art methods rely on architectures specialized for the task at hand. We present L4P (pronounced "LAP"), a feedforward, general-purpose architecture that solves low-level 4D perception tasks in a unified framework. L4P combines a ViT-based backbone with per-task heads that are lightweight and therefore do not require extensive training. Despite its general and feedforward formulation, our method matches or surpasses the performance of existing specialized methods on both dense tasks, such as depth or optical flow estimation, and sparse tasks, such as 2D/3D tracking. Moreover, it solves all those tasks at once in a time comparable to that of individual single-task methods.
Abstract:Faithfulness evaluators based on large language models (LLMs) are often fooled by the fluency of the text and struggle with identifying errors in the summaries. We propose an approach to summary faithfulness evaluation in which multiple LLM-based agents are assigned initial stances (regardless of what their belief might be) and forced to come up with a reason to justify the imposed belief, thus engaging in a multi-round debate to reach an agreement. The uniformly distributed initial assignments result in a greater diversity of stances leading to more meaningful debates and ultimately more errors identified. Furthermore, by analyzing the recent faithfulness evaluation datasets, we observe that naturally, it is not always the case for a summary to be either faithful to the source document or not. We therefore introduce a new dimension, ambiguity, and a detailed taxonomy to identify such special cases. Experiments demonstrate our approach can help identify ambiguities, and have even a stronger performance on non-ambiguous summaries.
Abstract:Unsupervised reinforcement learning (RL) aims to pre-train agents by exploring states or skills in reward-free environments, facilitating the adaptation to downstream tasks. However, existing methods often overlook the fitting ability of pre-trained policies and struggle to handle the heterogeneous pre-training data, which are crucial for achieving efficient exploration and fast fine-tuning. To address this gap, we propose Exploratory Diffusion Policy (EDP), which leverages the strong expressive ability of diffusion models to fit the explored data, both boosting exploration and obtaining an efficient initialization for downstream tasks. Specifically, we estimate the distribution of collected data in the replay buffer with the diffusion policy and propose a score intrinsic reward, encouraging the agent to explore unseen states. For fine-tuning the pre-trained diffusion policy on downstream tasks, we provide both theoretical analyses and practical algorithms, including an alternating method of Q function optimization and diffusion policy distillation. Extensive experiments demonstrate the effectiveness of EDP in efficient exploration during pre-training and fast adaptation during fine-tuning.