Abstract:Conversational analytics has been on the forefront of transformation driven by the advances in Speech and Natural Language Processing techniques. Rapid adoption of Large Language Models (LLMs) in the analytics field has taken the problems that can be automated to a new level of complexity and scale. In this paper, we introduce Theme Detection as a critical task in conversational analytics, aimed at automatically identifying and categorizing topics within conversations. This process can significantly reduce the manual effort involved in analyzing expansive dialogs, particularly in domains like customer support or sales. Unlike traditional dialog intent detection, which often relies on a fixed set of intents for downstream system logic, themes are intended as a direct, user-facing summary of the conversation's core inquiry. This distinction allows for greater flexibility in theme surface forms and user-specific customizations. We pose Controllable Conversational Theme Detection problem as a public competition track at Dialog System Technology Challenge (DSTC) 12 -- it is framed as joint clustering and theme labeling of dialog utterances, with the distinctive aspect being controllability of the resulting theme clusters' granularity achieved via the provided user preference data. We give an overview of the problem, the associated dataset and the evaluation metrics, both automatic and human. Finally, we discuss the participant teams' submissions and provide insights from those. The track materials (data and code) are openly available in the GitHub repository.
Abstract:Spatial cognition enables adaptive goal-directed behavior by constructing internal models of space. Robust biological systems consolidate spatial knowledge into three interconnected forms: \textit{landmarks} for salient cues, \textit{route knowledge} for movement trajectories, and \textit{survey knowledge} for map-like representations. While recent advances in multi-modal large language models (MLLMs) have enabled visual-language reasoning in embodied agents, these efforts lack structured spatial memory and instead operate reactively, limiting their generalization and adaptability in complex real-world environments. Here we present Brain-inspired Spatial Cognition for Navigation (BSC-Nav), a unified framework for constructing and leveraging structured spatial memory in embodied agents. BSC-Nav builds allocentric cognitive maps from egocentric trajectories and contextual cues, and dynamically retrieves spatial knowledge aligned with semantic goals. Integrated with powerful MLLMs, BSC-Nav achieves state-of-the-art efficacy and efficiency across diverse navigation tasks, demonstrates strong zero-shot generalization, and supports versatile embodied behaviors in the real physical world, offering a scalable and biologically grounded path toward general-purpose spatial intelligence.
Abstract:Structure and continuous motion estimation from point correspondences is a fundamental problem in computer vision that has been powered by well-known algorithms such as the familiar 5-point or 8-point algorithm. However, despite their acclaim, these algorithms are limited to processing point correspondences originating from a pair of views each one representing an instantaneous capture of the scene. Yet, in the case of rolling shutter cameras, or more recently, event cameras, this synchronization breaks down. In this work, we present a unified approach for structure and linear motion estimation from 2D point correspondences with arbitrary timestamps, from an arbitrary set of views. By formulating the problem in terms of first-order dynamics and leveraging a constant velocity motion model, we derive a novel, linear point incidence relation allowing for the efficient recovery of both linear velocity and 3D points with predictable degeneracies and solution multiplicities. Owing to its general formulation, it can handle correspondences from a wide range of sensing modalities such as global shutter, rolling shutter, and event cameras, and can even combine correspondences from different collocated sensors. We validate the effectiveness of our solver on both simulated and real-world data, where we show consistent improvement across all modalities when compared to recent approaches. We believe our work opens the door to efficient structure and motion estimation from asynchronous data. Code can be found at https://github.com/suhang99/AsyncTrack-Motion-Solver.
Abstract:Despite their widespread success, deep neural networks remain critically vulnerable to adversarial attacks, posing significant risks in safety-sensitive applications. This paper investigates activation functions as a crucial yet underexplored component for enhancing model robustness. We propose a Rademacher Complexity Reduction Activation Function (RCR-AF), a novel activation function designed to improve both generalization and adversarial resilience. RCR-AF uniquely combines the advantages of GELU (including smoothness, gradient stability, and negative information retention) with ReLU's desirable monotonicity, while simultaneously controlling both model sparsity and capacity through built-in clipping mechanisms governed by two hyperparameters, $\alpha$ and $\gamma$. Our theoretical analysis, grounded in Rademacher complexity, demonstrates that these parameters directly modulate the model's Rademacher complexity, offering a principled approach to enhance robustness. Comprehensive empirical evaluations show that RCR-AF consistently outperforms widely-used alternatives (ReLU, GELU, and Swish) in both clean accuracy under standard training and in adversarial robustness within adversarial training paradigms.
Abstract:Gradient-based adversarial attacks using the Cross-Entropy (CE) loss often suffer from overestimation due to relative errors in gradient computation induced by floating-point arithmetic. This paper provides a rigorous theoretical analysis of these errors, conducting the first comprehensive study of floating-point computation errors in gradient-based attacks across four distinct scenarios: (i) unsuccessful untargeted attacks, (ii) successful untargeted attacks, (iii) unsuccessful targeted attacks, and (iv) successful targeted attacks. We establish theoretical foundations characterizing the behavior of relative numerical errors under different attack conditions, revealing previously unknown patterns in gradient computation instability, and identify floating-point underflow and rounding as key contributors. Building on this insight, we propose the Theoretical MIFPE (T-MIFPE) loss function, which incorporates an optimal scaling factor $T = t^*$ to minimize the impact of floating-point errors, thereby enhancing the accuracy of gradient computation in adversarial attacks. Extensive experiments on the MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate that T-MIFPE outperforms existing loss functions, including CE, C\&W, DLR, and MIFPE, in terms of attack potency and robustness evaluation accuracy.
Abstract:The production of high-quality 2D animation is highly labor-intensive process, as animators are currently required to draw and color a large number of frames by hand. We present SketchColour, the first sketch-to-colour pipeline for 2D animation built on a diffusion transformer (DiT) backbone. By replacing the conventional U-Net denoiser with a DiT-style architecture and injecting sketch information via lightweight channel-concatenation adapters accompanied with LoRA finetuning, our method natively integrates conditioning without the parameter and memory bloat of a duplicated ControlNet, greatly reducing parameter count and GPU memory usage. Evaluated on the SAKUGA dataset, SketchColour outperforms previous state-of-the-art video colourization methods across all metrics, despite using only half the training data of competing models. Our approach produces temporally coherent animations with minimal artifacts such as colour bleeding or object deformation. Our code is available at: https://bconstantine.github.io/SketchColour .
Abstract:PDE-Constrained Optimization (PDECO) problems can be accelerated significantly by employing gradient-based methods with surrogate models like neural operators compared to traditional numerical solvers. However, this approach faces two key challenges: (1) **Data inefficiency**: Lack of efficient data sampling and effective training for neural operators, particularly for optimization purpose. (2) **Instability**: High risk of optimization derailment due to inaccurate neural operator predictions and gradients. To address these challenges, we propose a novel framework: (1) **Optimization-oriented training**: we leverage data from full steps of traditional optimization algorithms and employ a specialized training method for neural operators. (2) **Enhanced derivative learning**: We introduce a *Virtual-Fourier* layer to enhance derivative learning within the neural operator, a crucial aspect for gradient-based optimization. (3) **Hybrid optimization**: We implement a hybrid approach that integrates neural operators with numerical solvers, providing robust regularization for the optimization process. Our extensive experimental results demonstrate the effectiveness of our model in accurately learning operators and their derivatives. Furthermore, our hybrid optimization approach exhibits robust convergence.
Abstract:Ensuring the safety and alignment of Large Language Models is a significant challenge with their growing integration into critical applications and societal functions. While prior research has primarily focused on jailbreak attacks, less attention has been given to non-adversarial failures that subtly emerge during benign interactions. We introduce secondary risks a novel class of failure modes marked by harmful or misleading behaviors during benign prompts. Unlike adversarial attacks, these risks stem from imperfect generalization and often evade standard safety mechanisms. To enable systematic evaluation, we introduce two risk primitives verbose response and speculative advice that capture the core failure patterns. Building on these definitions, we propose SecLens, a black-box, multi-objective search framework that efficiently elicits secondary risk behaviors by optimizing task relevance, risk activation, and linguistic plausibility. To support reproducible evaluation, we release SecRiskBench, a benchmark dataset of 650 prompts covering eight diverse real-world risk categories. Experimental results from extensive evaluations on 16 popular models demonstrate that secondary risks are widespread, transferable across models, and modality independent, emphasizing the urgent need for enhanced safety mechanisms to address benign yet harmful LLM behaviors in real-world deployments.
Abstract:Recent advancements in multimodal large language models for video understanding (videoLLMs) have improved their ability to process dynamic multimodal data. However, trustworthiness challenges factual inaccuracies, harmful content, biases, hallucinations, and privacy risks, undermine reliability due to video data's spatiotemporal complexities. This study introduces Trust-videoLLMs, a comprehensive benchmark evaluating videoLLMs across five dimensions: truthfulness, safety, robustness, fairness, and privacy. Comprising 30 tasks with adapted, synthetic, and annotated videos, the framework assesses dynamic visual scenarios, cross-modal interactions, and real-world safety concerns. Our evaluation of 23 state-of-the-art videoLLMs (5 commercial,18 open-source) reveals significant limitations in dynamic visual scene understanding and cross-modal perturbation resilience. Open-source videoLLMs show occasional truthfulness advantages but inferior overall credibility compared to commercial models, with data diversity outperforming scale effects. These findings highlight the need for advanced safety alignment to enhance capabilities. Trust-videoLLMs provides a publicly available, extensible toolbox for standardized trustworthiness assessments, bridging the gap between accuracy-focused benchmarks and critical demands for robustness, safety, fairness, and privacy.
Abstract:Recent studies have revealed that the loss landscape of large language models resembles a basin, within which the models perform nearly identically, and outside of which they lose all their capabilities. In this work, we conduct further studies on the loss landscape of large language models. We discover that pre-training creates a "basic capability" basin, and subsequent fine-tuning creates "specific capability" basins (e.g., math, safety, coding) within the basic capability basin. We further investigate two types of loss landscapes: the most-case landscape (i.e., the landscape along most directions) and the worst-case landscape (i.e., the landscape along the worst direction). We argue that as long as benign fine-tuning remains within the most-case basin, it will not compromise previous capabilities. Similarly, any fine-tuning (including the adversarial one) that stays within the worst-case basin would not compromise previous capabilities. Finally, we theoretically demonstrate that the size of the most-case basin can bound the size of the worst-case basin and the robustness with respect to input perturbations. We also show that, due to the over-parameterization property of current large language models, one can easily enlarge the basins by five times.