Abstract:In recent years, Large Language Models (LLMs) have become fundamental to a broad spectrum of artificial intelligence applications. As the use of LLMs expands, precisely estimating the uncertainty in their predictions has become crucial. Current methods often struggle to accurately identify, measure, and address the true uncertainty, with many focusing primarily on estimating model confidence. This discrepancy is largely due to an incomplete understanding of where, when, and how uncertainties are injected into models. This paper introduces a comprehensive framework specifically designed to identify and understand the types and sources of uncertainty, aligned with the unique characteristics of LLMs. Our framework enhances the understanding of the diverse landscape of uncertainties by systematically categorizing and defining each type, establishing a solid foundation for developing targeted methods that can precisely quantify these uncertainties. We also provide a detailed introduction to key related concepts and examine the limitations of current methods in mission-critical and safety-sensitive applications. The paper concludes with a perspective on future directions aimed at enhancing the reliability and practical adoption of these methods in real-world scenarios.
Abstract:The challenge of Multimodal Deformable Image Registration (MDIR) lies in the conversion and alignment of features between images of different modalities. Generative models (GMs) cannot retain the necessary information enough from the source modality to the target one, while non-GMs struggle to align features across these two modalities. In this paper, we propose a novel coarse-to-fine MDIR framework,LLM-Morph, which is applicable to various pre-trained Large Language Models (LLMs) to solve these concerns by aligning the deep features from different modal medical images. Specifically, we first utilize a CNN encoder to extract deep visual features from cross-modal image pairs, then we use the first adapter to adjust these tokens, and use LoRA in pre-trained LLMs to fine-tune their weights, both aimed at eliminating the domain gap between the pre-trained LLMs and the MDIR task. Third, for the alignment of tokens, we utilize other four adapters to transform the LLM-encoded tokens into multi-scale visual features, generating multi-scale deformation fields and facilitating the coarse-to-fine MDIR task. Extensive experiments in MR-CT Abdomen and SR-Reg Brain datasets demonstrate the effectiveness of our framework and the potential of pre-trained LLMs for MDIR task. Our code is availabel at: https://github.com/ninjannn/LLM-Morph.
Abstract:New medical treatment development requires multiple phases of clinical trials. Despite the significant human and financial costs of bringing a drug to market, less than 20% of drugs in testing will make it from the first phase to final approval. Recent literature indicates that the design of the trial protocols significantly contributes to trial performance. We investigated Clinical Trial Outcome Prediction (CTOP) using trial design documents to predict phase transitions automatically. We propose CTP-LLM, the first Large Language Model (LLM) based model for CTOP. We also introduce the PhaseTransition (PT) Dataset; which labels trials based on their progression through the regulatory process and serves as a benchmark for CTOP evaluation. Our fine-tuned GPT-3.5-based model (CTP-LLM) predicts clinical trial phase transition by analyzing the trial's original protocol texts without requiring human-selected features. CTP-LLM achieves a 67% accuracy rate in predicting trial phase transitions across all phases and a 75% accuracy rate specifically in predicting the transition from Phase~III to final approval. Our experimental performance highlights the potential of LLM-powered applications in forecasting clinical trial outcomes and assessing trial design.
Abstract:Text summarization, a key natural language generation (NLG) task, is vital in various domains. However, the high cost of inaccurate summaries in risk-critical applications, particularly those involving human-in-the-loop decision-making, raises concerns about the reliability of uncertainty estimation on text summarization (UE-TS) evaluation methods. This concern stems from the dependency of uncertainty model metrics on diverse and potentially conflicting NLG metrics. To address this issue, we introduce a comprehensive UE-TS benchmark incorporating 31 NLG metrics across four dimensions. The benchmark evaluates the uncertainty estimation capabilities of two large language models and one pre-trained language model on three datasets, with human-annotation analysis incorporated where applicable. We also assess the performance of 14 common uncertainty estimation methods within this benchmark. Our findings emphasize the importance of considering multiple uncorrelated NLG metrics and diverse uncertainty estimation methods to ensure reliable and efficient evaluation of UE-TS techniques.
Abstract:Despite their vast capabilities, Large Language Models (LLMs) often struggle with generating reliable outputs, frequently producing high-confidence inaccuracies known as hallucinations. Addressing this challenge, our research introduces InternalInspector, a novel framework designed to enhance confidence estimation in LLMs by leveraging contrastive learning on internal states including attention states, feed-forward states, and activation states of all layers. Unlike existing methods that primarily focus on the final activation state, InternalInspector conducts a comprehensive analysis across all internal states of every layer to accurately identify both correct and incorrect prediction processes. By benchmarking InternalInspector against existing confidence estimation methods across various natural language understanding and generation tasks, including factual question answering, commonsense reasoning, and reading comprehension, InternalInspector achieves significantly higher accuracy in aligning the estimated confidence scores with the correctness of the LLM's predictions and lower calibration error. Furthermore, InternalInspector excels at HaluEval, a hallucination detection benchmark, outperforming other internal-based confidence estimation methods in this task.
Abstract:Recent advancements in Large Language Models (LLMs) have enabled the creation of fake news, particularly in complex fields like healthcare. Studies highlight the gap in the deceptive power of LLM-generated fake news with and without human assistance, yet the potential of prompting techniques has not been fully explored. Thus, this work aims to determine whether prompting strategies can effectively narrow this gap. Current LLM-based fake news attacks require human intervention for information gathering and often miss details and fail to maintain context consistency. Therefore, to better understand threat tactics, we propose a strong fake news attack method called conditional Variational-autoencoder-Like Prompt (VLPrompt). Unlike current methods, VLPrompt eliminates the need for additional data collection while maintaining contextual coherence and preserving the intricacies of the original text. To propel future research on detecting VLPrompt attacks, we created a new dataset named VLPrompt fake news (VLPFN) containing real and fake texts. Our experiments, including various detection methods and novel human study metrics, were conducted to assess their performance on our dataset, yielding numerous findings.
Abstract:Semi-supervised dialogue summarization (SSDS) leverages model-generated summaries to reduce reliance on human-labeled data and improve the performance of summarization models. While addressing label noise, previous works on semi-supervised learning primarily focus on natural language understanding tasks, assuming each sample has a unique label. However, these methods are not directly applicable to SSDS, as it is a generative task, and each dialogue can be summarized in different ways. In this work, we propose a novel scoring approach, SiCF, which encapsulates three primary dimensions of summarization model quality: Semantic invariance (indicative of model confidence), Coverage (factual recall), and Faithfulness (factual precision). Using the SiCF score, we select unlabeled dialogues with high-quality generated summaries to train summarization models. Comprehensive experiments on three public datasets demonstrate the effectiveness of SiCF scores in uncertainty estimation and semi-supervised learning for dialogue summarization tasks. Our code is available at \url{https://github.com/amazon-science/summarization-sicf-score}.
Abstract:The fairness and trustworthiness of Large Language Models (LLMs) are receiving increasing attention. Implicit hate speech, which employs indirect language to convey hateful intentions, occupies a significant portion of practice. However, the extent to which LLMs effectively address this issue remains insufficiently examined. This paper delves into the capability of LLMs to detect implicit hate speech (Classification Task) and express confidence in their responses (Calibration Task). Our evaluation meticulously considers various prompt patterns and mainstream uncertainty estimation methods. Our findings highlight that LLMs exhibit two extremes: (1) LLMs display excessive sensitivity towards groups or topics that may cause fairness issues, resulting in misclassifying benign statements as hate speech. (2) LLMs' confidence scores for each method excessively concentrate on a fixed range, remaining unchanged regardless of the dataset's complexity. Consequently, the calibration performance is heavily reliant on primary classification accuracy. These discoveries unveil new limitations of LLMs, underscoring the need for caution when optimizing models to ensure they do not veer towards extremes. This serves as a reminder to carefully consider sensitivity and confidence in the pursuit of model fairness.
Abstract:The meaning of complex phrases in natural language is composed of their individual components. The task of compositional generalization evaluates a model's ability to understand new combinations of components. Previous studies trained smaller, task-specific models, which exhibited poor generalization. While large language models (LLMs) exhibit impressive generalization abilities on many tasks through in-context learning (ICL), their potential for compositional generalization remains unexplored. In this paper, we first empirically investigate prevailing ICL methods in compositional generalization. We find that they struggle with complex compositional questions due to cumulative errors in long reasoning steps and intricate logic required for tool-making. Consequently, we propose a human-guided tool manipulation framework (HTM) that generates tools for sub-questions and integrates multiple tools. Our method enhances the effectiveness of tool creation and usage with minimal human effort. Experiments show that our method achieves state-of-the-art performance on two compositional generalization benchmarks and outperforms existing methods on the most challenging test split by 70%.
Abstract:Sequential labeling is a task predicting labels for each token in a sequence, such as Named Entity Recognition (NER). NER tasks aim to extract entities and predict their labels given a text, which is important in information extraction. Although previous works have shown great progress in improving NER performance, uncertainty estimation on NER (UE-NER) is still underexplored but essential. This work focuses on UE-NER, which aims to estimate uncertainty scores for the NER predictions. Previous uncertainty estimation models often overlook two unique characteristics of NER: the connection between entities (i.e., one entity embedding is learned based on the other ones) and wrong span cases in the entity extraction subtask. Therefore, we propose a Sequential Labeling Posterior Network (SLPN) to estimate uncertainty scores for the extracted entities, considering uncertainty transmitted from other tokens. Moreover, we have defined an evaluation strategy to address the specificity of wrong-span cases. Our SLPN has achieved significant improvements on two datasets, such as a 5.54-point improvement in AUPR on the MIT-Restaurant dataset.