Abstract:Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.
Abstract:How can models effectively detect out-of-distribution (OOD) samples in complex, multi-label settings without extensive retraining? Existing OOD detection methods struggle to capture the intricate semantic relationships and label co-occurrences inherent in multi-label settings, often requiring large amounts of training data and failing to generalize to unseen label combinations. While large language models have revolutionized zero-shot OOD detection, they primarily focus on single-label scenarios, leaving a critical gap in handling real-world tasks where samples can be associated with multiple interdependent labels. To address these challenges, we introduce COOD, a novel zero-shot multi-label OOD detection framework. COOD leverages pre-trained vision-language models, enhancing them with a concept-based label expansion strategy and a new scoring function. By enriching the semantic space with both positive and negative concepts for each label, our approach models complex label dependencies, precisely differentiating OOD samples without the need for additional training. Extensive experiments demonstrate that our method significantly outperforms existing approaches, achieving approximately 95% average AUROC on both VOC and COCO datasets, while maintaining robust performance across varying numbers of labels and different types of OOD samples.
Abstract:The fashion industry is one of the leading domains in the global e-commerce sector, prompting major online retailers to employ recommendation systems for product suggestions and customer convenience. While recommendation systems have been widely studied, most are designed for general e-commerce problems and struggle with the unique challenges of the fashion domain. To address these issues, we propose a sequential fashion recommendation framework that leverages a pre-trained large language model (LLM) enhanced with recommendation-specific prompts. Our framework employs parameter-efficient fine-tuning with extensive fashion data and introduces a novel mix-up-based retrieval technique for translating text into relevant product suggestions. Extensive experiments show our proposed framework significantly enhances fashion recommendation performance.
Abstract:As large language models achieve increasingly impressive results, questions arise about whether such performance is from generalizability or mere data memorization. Thus, numerous data contamination detection methods have been proposed. However, these approaches are often validated with traditional benchmarks and early-stage LLMs, leaving uncertainty about their effectiveness when evaluating state-of-the-art LLMs on the contamination of more challenging benchmarks. To address this gap and provide a dual investigation of SOTA LLM contamination status and detection method robustness, we evaluate five contamination detection approaches with four state-of-the-art LLMs across eight challenging datasets often used in modern LLM evaluation. Our analysis reveals that (1) Current methods have non-trivial limitations in their assumptions and practical applications; (2) Notable difficulties exist in detecting contamination introduced during instruction fine-tuning with answer augmentation; and (3) Limited consistencies between SOTA contamination detection techniques. These findings highlight the complexity of contamination detection in advanced LLMs and the urgent need for further research on robust and generalizable contamination evaluation. Our code is available at https://github.com/vsamuel2003/data-contamination.
Abstract:Persona agents, which are LLM agents that act according to an assigned persona, have demonstrated impressive contextual response capabilities across various applications. These persona agents offer significant enhancements across diverse sectors, such as education, healthcare, and entertainment, where model developers can align agent responses to different user requirements thereby broadening the scope of agent applications. However, evaluating persona agent performance is incredibly challenging due to the complexity of assessing persona adherence in free-form interactions across various environments that are relevant to each persona agent. We introduce PersonaGym, the first dynamic evaluation framework for assessing persona agents, and PersonaScore, the first automated human-aligned metric grounded in decision theory for comprehensive large-scale evaluation of persona agents. Our evaluation of 6 open and closed-source LLMs, using a benchmark encompassing 200 personas and 10,000 questions, reveals significant opportunities for advancement in persona agent capabilities across state-of-the-art models. For example, Claude 3.5 Sonnet only has a 2.97% relative improvement in PersonaScore than GPT 3.5 despite being a much more advanced model. Importantly, we find that increased model size and complexity do not necessarily imply enhanced persona agent capabilities thereby highlighting the pressing need for algorithmic and architectural invention towards faithful and performant persona agents.
Abstract:The efficiency and scalability of graph convolution networks (GCNs) in training recommender systems (RecSys) have been persistent concerns, hindering their deployment in real-world applications. This paper presents a critical examination of the necessity of graph convolutions during the training phase and introduces an innovative alternative: the Light Post-Training Graph Ordinary-Differential-Equation (LightGODE). Our investigation reveals that the benefits of GCNs are more pronounced during testing rather than training. Motivated by this, LightGODE utilizes a novel post-training graph convolution method that bypasses the computation-intensive message passing of GCNs and employs a non-parametric continuous graph ordinary-differential-equation (ODE) to dynamically model node representations. This approach drastically reduces training time while achieving fine-grained post-training graph convolution to avoid the distortion of the original training embedding space, termed the embedding discrepancy issue. We validate our model across several real-world datasets of different scales, demonstrating that LightGODE not only outperforms GCN-based models in terms of efficiency and effectiveness but also significantly mitigates the embedding discrepancy commonly associated with deeper graph convolution layers. Our LightGODE challenges the prevailing paradigms in RecSys training and suggests re-evaluating the role of graph convolutions, potentially guiding future developments of efficient large-scale graph-based RecSys.
Abstract:We find that language models have difficulties generating fallacious and deceptive reasoning. When asked to generate deceptive outputs, language models tend to leak honest counterparts but believe them to be false. Exploiting this deficiency, we propose a jailbreak attack method that elicits an aligned language model for malicious output. Specifically, we query the model to generate a fallacious yet deceptively real procedure for the harmful behavior. Since a fallacious procedure is generally considered fake and thus harmless by LLMs, it helps bypass the safeguard mechanism. Yet the output is factually harmful since the LLM cannot fabricate fallacious solutions but proposes truthful ones. We evaluate our approach over five safety-aligned large language models, comparing four previous jailbreak methods, and show that our approach achieves competitive performance with more harmful outputs. We believe the findings could be extended beyond model safety, such as self-verification and hallucination.
Abstract:This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.
Abstract:Large Language Models (LLMs) have achieved unparalleled success across diverse language modeling tasks in recent years. However, this progress has also intensified ethical concerns, impacting the deployment of LLMs in everyday contexts. This paper provides a comprehensive survey of ethical challenges associated with LLMs, from longstanding issues such as copyright infringement, systematic bias, and data privacy, to emerging problems like truthfulness and social norms. We critically analyze existing research aimed at understanding, examining, and mitigating these ethical risks. Our survey underscores integrating ethical standards and societal values into the development of LLMs, thereby guiding the development of responsible and ethically aligned language models.
Abstract:Recommender systems (RecSys) play a vital role in online platforms, offering users personalized suggestions amidst vast information. Graph contrastive learning aims to learn from high-order collaborative filtering signals with unsupervised augmentation on the user-item bipartite graph, which predominantly relies on the multi-task learning framework involving both the pair-wise recommendation loss and the contrastive loss. This decoupled design can cause inconsistent optimization direction from different losses, which leads to longer convergence time and even sub-optimal performance. Besides, the self-supervised contrastive loss falls short in alleviating the data sparsity issue in RecSys as it learns to differentiate users/items from different views without providing extra supervised collaborative filtering signals during augmentations. In this paper, we propose Mixed Supervised Graph Contrastive Learning for Recommendation (MixSGCL) to address these concerns. MixSGCL originally integrates the training of recommendation and unsupervised contrastive losses into a supervised contrastive learning loss to align the two tasks within one optimization direction. To cope with the data sparsity issue, instead unsupervised augmentation, we further propose node-wise and edge-wise mixup to mine more direct supervised collaborative filtering signals based on existing user-item interactions. Extensive experiments on three real-world datasets demonstrate that MixSGCL surpasses state-of-the-art methods, achieving top performance on both accuracy and efficiency. It validates the effectiveness of MixSGCL with our coupled design on supervised graph contrastive learning.