Abstract:Test-time scaling has emerged as a powerful technique for enhancing the reasoning capabilities of large language models. However, its effectiveness in medical reasoning remains uncertain, as the medical domain fundamentally differs from mathematical tasks in terms of knowledge representation and decision-making processes. In this paper, we provide the first comprehensive investigation of test-time scaling for medical reasoning and present m1, a simple yet effective approach that increases a model's medical reasoning capability at inference. Our evaluation across diverse medical tasks demonstrates that test-time scaling consistently enhances medical reasoning, enabling lightweight fine-tuned models under 10B parameters to establish new state-of-the-art performance, while our 32B model rivals previous 70B-scale medical LLMs. However, we identify an optimal reasoning token budget of approximately 4K, beyond which performance may degrade due to overthinking. Budget forcing, which extends test-time computation through iterative prompts, helps models double-check answers but does not necessarily improve the overall medical QA performance and, in some cases, even introduces errors into previously correct responses. Our case-by-case analysis identifies insufficient medical knowledge as a key bottleneck that prevents further performance gains through test-time scaling. We find that increasing data scale, improving data quality, and expanding model capacity consistently enhance medical knowledge grounding, enabling continued performance improvements, particularly on challenging medical benchmarks where smaller models reach saturation. These findings underscore fundamental differences between medical and mathematical reasoning in LLMs, highlighting that enriched medical knowledge, other than increased reasoning depth alone, is essential for realizing the benefits of test-time scaling.
Abstract:Process-supervised reward models serve as a fine-grained function that provides detailed step-wise feedback to model responses, facilitating effective selection of reasoning trajectories for complex tasks. Despite its advantages, evaluation on PRMs remains less explored, especially in the multimodal domain. To address this gap, this paper first benchmarks current vision large language models (VLLMs) as two types of reward models: output reward models (ORMs) and process reward models (PRMs) on multiple vision-language benchmarks, which reveal that neither ORM nor PRM consistently outperforms across all tasks, and superior VLLMs do not necessarily yield better rewarding performance. To further advance evaluation, we introduce ViLBench, a vision-language benchmark designed to require intensive process reward signals. Notably, OpenAI's GPT-4o with Chain-of-Thought (CoT) achieves only 27.3% accuracy, indicating the benchmark's challenge for current VLLMs. Lastly, we preliminarily showcase a promising pathway towards bridging the gap between general VLLMs and reward models -- by collecting 73.6K vision-language process reward data using an enhanced tree-search algorithm, our 3B model is able to achieve an average improvement of 3.3% over standard CoT and up to 2.5% compared to its untrained counterpart on ViLBench by selecting OpenAI o1's generations. We release the implementations at https://ucsc-vlaa.github.io/ViLBench with our code, model, and data.
Abstract:Mixture-of-Experts (MoE) Transformer, the backbone architecture of multiple phenomenal language models, leverages sparsity by activating only a fraction of model parameters for each input token. The sparse structure, while allowing constant time costs, results in space inefficiency: we still need to load all the model parameters during inference. We introduce ResMoE, an innovative MoE approximation framework that utilizes Wasserstein barycenter to extract a common expert (barycenter expert) and approximate the residuals between this barycenter expert and the original ones. ResMoE enhances the space efficiency for inference of large-scale MoE Transformers in a one-shot and data-agnostic manner without retraining while maintaining minimal accuracy loss, thereby paving the way for broader accessibility to large language models. We demonstrate the effectiveness of ResMoE through extensive experiments on Switch Transformer, Mixtral, and DeepSeekMoE models. The results show that ResMoE can reduce the number of parameters in an expert by up to 75% while maintaining comparable performance. The code is available at https://github.com/iDEA-iSAIL-Lab-UIUC/ResMoE.
Abstract:With the advancement of conversational large language models (LLMs), several LLM-based Conversational Shopping Agents (CSA) have been developed to help customers answer questions and smooth their shopping journey in e-commerce domain. The primary objective in building a trustworthy CSA is to ensure the agent's responses are accurate and factually grounded, which is essential for building customer trust and encouraging continuous engagement. However, two challenges remain. First, LLMs produce hallucinated or unsupported claims. Such inaccuracies risk spreading misinformation and diminishing customer trust. Second, without providing knowledge source attribution in CSA response, customers struggle to verify LLM-generated information. To address these challenges, we present an easily productionized solution that enables a "citation experience" utilizing In-context Learning (ICL) and Multi-UX-Inference (MUI) to generate responses with citations to attribute its original sources without interfering other existing UX features. With proper UX design, these citation marks can be linked to the related product information and display the source to our customers. In this work, we also build auto-metrics and scalable benchmarks to holistically evaluate LLM's grounding and attribution capabilities. Our experiments demonstrate that incorporating this citation generation paradigm can substantially enhance the grounding of LLM responses by 13.83% on the real-world data. As such, our solution not only addresses the immediate challenges of LLM grounding issues but also adds transparency to conversational AI.
Abstract:Search plays a fundamental role in problem-solving across various domains, with most real-world decision-making problems being solvable through systematic search. Drawing inspiration from recent discussions on search and learning, we systematically explore the complementary relationship between search and Large Language Models (LLMs) from three perspectives. First, we analyze how learning can enhance search efficiency and propose Search via Learning (SeaL), a framework that leverages LLMs for effective and efficient search. Second, we further extend SeaL to SeaL-C to ensure rigorous completeness during search. Our evaluation across three real-world planning tasks demonstrates that SeaL achieves near-perfect accuracy while reducing search spaces by up to 99.1% compared to traditional approaches. Finally, we explore how far LLMs are from real search by investigating whether they can develop search capabilities independently. Our analysis reveals that while current LLMs struggle with efficient search in complex problems, incorporating systematic search strategies significantly enhances their problem-solving capabilities. These findings not only validate the effectiveness of our approach but also highlight the need for improving LLMs' search abilities for real-world applications.
Abstract:Unlearning has been proposed to remove copyrighted and privacy-sensitive data from Large Language Models (LLMs). Existing approaches primarily rely on fine-tuning-based methods, which can be categorized into gradient ascent-based (GA-based) and suppression-based methods. However, they often degrade model utility (the ability to respond to normal prompts). In this work, we aim to develop a general framework that enhances the utility of fine-tuning-based unlearning methods. To achieve this goal, we first investigate the common property between GA-based and suppression-based methods. We unveil that GA-based methods unlearn by distinguishing the target data (i.e., the data to be removed) and suppressing related generations, which is essentially the same strategy employed by suppression-based methods. Inspired by this finding, we introduce Gated Representation UNlearning (GRUN) which has two components: a soft gate function for distinguishing target data and a suppression module using Representation Fine-tuning (ReFT) to adjust representations rather than model parameters. Experiments show that GRUN significantly improves the unlearning and utility. Meanwhile, it is general for fine-tuning-based methods, efficient and promising for sequential unlearning.
Abstract:Chain-of-Thought (CoT) reasoning, which breaks down complex tasks into intermediate reasoning steps, has significantly enhanced the performance of large language models (LLMs) on challenging tasks. However, the detailed reasoning process in CoT often incurs long generation times and high computational costs, partly due to the inclusion of unnecessary steps. To address this, we propose a method to identify critical reasoning steps using perplexity as a measure of their importance: a step is deemed critical if its removal causes a significant increase in perplexity. Our method enables models to focus solely on generating these critical steps. This can be achieved through two approaches: refining demonstration examples in few-shot CoT or fine-tuning the model using selected examples that include only critical steps. Comprehensive experiments validate the effectiveness of our method, which achieves a better balance between the reasoning accuracy and efficiency of CoT.
Abstract:The instruction hierarchy, which establishes a priority order from system messages to user messages, conversation history, and tool outputs, is essential for ensuring consistent and safe behavior in language models (LMs). Despite its importance, this topic receives limited attention, and there is a lack of comprehensive benchmarks for evaluating models' ability to follow the instruction hierarchy. We bridge this gap by introducing IHEval, a novel benchmark comprising 3,538 examples across nine tasks, covering cases where instructions in different priorities either align or conflict. Our evaluation of popular LMs highlights their struggle to recognize instruction priorities. All evaluated models experience a sharp performance decline when facing conflicting instructions, compared to their original instruction-following performance. Moreover, the most competitive open-source model only achieves 48% accuracy in resolving such conflicts. Our results underscore the need for targeted optimization in the future development of LMs.
Abstract:Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
Abstract:Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.