Abstract:Generative models such as Large Language Models (LLM) and Multimodal Large Language models (MLLMs) trained on massive web corpora can memorize and disclose individuals' confidential and private data, raising legal and ethical concerns. While many previous works have addressed this issue in LLM via machine unlearning, it remains largely unexplored for MLLMs. To tackle this challenge, we introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning. MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives. The benchmark is divided into four sets to assess unlearning algorithms in terms of efficacy, generalizability, and model utility. Finally, we provide baseline results using existing generative model unlearning algorithms. Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation and cloze tasks, while multimodal unlearning approaches perform better in classification tasks with multimodal inputs.
Abstract:Best-of-N decoding methods instruct large language models (LLMs) to generate multiple solutions, score each using a scoring function, and select the highest scored as the final answer to mathematical reasoning problems. However, this repeated independent process often leads to the same mistakes, making the selected solution still incorrect. We propose a novel prompting method named Stepwise Correction (StepCo) that helps LLMs identify and revise incorrect steps in their generated reasoning paths. It iterates verification and revision phases that employ a process-supervised verifier. The verify-then-revise process not only improves answer correctness but also reduces token consumption with fewer paths needed to generate. With StepCo, a series of LLMs demonstrate exceptional performance. Notably, using GPT-4o as the backend LLM, StepCo achieves an average accuracy of 94.1 across eight datasets, significantly outperforming the state-of-the-art Best-of-N method by +2.4, while reducing token consumption by 77.8%.
Abstract:Taxonomies play a crucial role in various applications by providing a structural representation of knowledge. The task of taxonomy expansion involves integrating emerging concepts into existing taxonomies by identifying appropriate parent concepts for these new query concepts. Previous approaches typically relied on self-supervised methods that generate annotation data from existing taxonomies. However, these methods are less effective when the existing taxonomy is small (fewer than 100 entities). In this work, we introduce \textsc{CodeTaxo}, a novel approach that leverages large language models through code language prompts to capture the taxonomic structure. Extensive experiments on five real-world benchmarks from different domains demonstrate that \textsc{CodeTaxo} consistently achieves superior performance across all evaluation metrics, significantly outperforming previous state-of-the-art methods. The code and data are available at \url{https://github.com/QingkaiZeng/CodeTaxo-Pub}.
Abstract:Generative AI technologies have been deployed in many places, such as (multimodal) large language models and vision generative models. Their remarkable performance should be attributed to massive training data and emergent reasoning abilities. However, the models would memorize and generate sensitive, biased, or dangerous information originated from the training data especially those from web crawl. New machine unlearning (MU) techniques are being developed to reduce or eliminate undesirable knowledge and its effects from the models, because those that were designed for traditional classification tasks could not be applied for Generative AI. We offer a comprehensive survey on many things about MU in Generative AI, such as a new problem formulation, evaluation methods, and a structured discussion on the advantages and limitations of different kinds of MU techniques. It also presents several critical challenges and promising directions in MU research. A curated list of readings can be found: https://github.com/franciscoliu/GenAI-MU-Reading.
Abstract:Large language models (LLMs) demonstrate great potential for problems with implicit graphical structures, while recent works seek to enhance the graph reasoning capabilities of LLMs through specialized instruction tuning. The resulting 'graph LLMs' are evaluated with in-distribution settings only, thus it remains underexplored whether LLMs are learning generalizable graph reasoning skills or merely memorizing patterns in the synthetic training data. To this end, we propose the NLGift benchmark, an evaluation suite of LLM graph reasoning generalization: whether LLMs could go beyond semantic, numeric, structural, reasoning patterns in the synthetic training data and improve utility on real-world graph-based tasks. Extensive experiments with two LLMs across four graph reasoning tasks demonstrate that while generalization on simple patterns (semantic, numeric) is somewhat satisfactory, LLMs struggle to generalize across reasoning and real-world patterns, casting doubt on the benefit of synthetic graph tuning for real-world tasks with underlying network structures. We explore three strategies to improve LLM graph reasoning generalization, and we find that while post-training alignment is most promising for real-world tasks, empowering LLM graph reasoning to go beyond pattern memorization remains an open research question.
Abstract:Personalized large language models (LLMs) aim to tailor interactions, content, and recommendations to individual user preferences. While parameter-efficient fine-tuning (PEFT) methods excel in performance and generalization, they are costly and limit communal benefits when used individually. To this end, we introduce Personalized Pieces (Per-Pcs), a framework that allows users to safely share and assemble personalized PEFT efficiently with collaborative efforts. Per-Pcs involves selecting sharers, breaking their PEFT into pieces, and training gates for each piece. These pieces are added to a pool, from which target users can select and assemble personalized PEFT using their history data. This approach preserves privacy and enables fine-grained user modeling without excessive storage and computation demands. Experimental results show Per-Pcs outperforms non-personalized and PEFT retrieval baselines, offering performance comparable to OPPU with significantly lower resource use across six tasks. Further analysis highlights Per-Pcs's robustness concerning sharer count and selection strategy, pieces sharing ratio, and scalability in computation time and storage space. Per-Pcs's modularity promotes safe sharing, making LLM personalization more efficient, effective, and widely accessible through collaborative efforts.
Abstract:The scaling laws have become the de facto guidelines for designing large language models (LLMs), but they were studied under the assumption of unlimited computing resources for both training and inference. As LLMs are increasingly used as personalized intelligent assistants, their customization (i.e., learning through fine-tuning) and deployment onto resource-constrained edge devices will become more and more prevalent. An urging but open question is how a resource-constrained computing environment would affect the design choices for a personalized LLM. We study this problem empirically in this work. In particular, we consider the tradeoffs among a number of key design factors and their intertwined impacts on learning efficiency and accuracy. The factors include the learning methods for LLM customization, the amount of personalized data used for learning customization, the types and sizes of LLMs, the compression methods of LLMs, the amount of time afforded to learn, and the difficulty levels of the target use cases. Through extensive experimentation and benchmarking, we draw a number of surprisingly insightful guidelines for deploying LLMs onto resource-constrained devices. For example, an optimal choice between parameter learning and RAG may vary depending on the difficulty of the downstream task, the longer fine-tuning time does not necessarily help the model, and a compressed LLM may be a better choice than an uncompressed LLM to learn from limited personalized data.
Abstract:Intrinsic self-correct was a method that instructed large language models (LLMs) to verify and correct their responses without external feedback. Unfortunately, the study concluded that the LLMs could not self-correct reasoning yet. We find that a simple yet effective verification method can unleash inherent capabilities of the LLMs. That is to mask a key condition in the question, add the current response to construct a verification question, and predict the condition to verify the response. The condition can be an entity in an open-domain question or a numeric value in a math question, which requires minimal effort (via prompting) to identify. We propose an iterative verify-then-correct framework to progressively identify and correct (probably) false responses, named ProCo. We conduct experiments on three reasoning tasks. On average, ProCo, with GPT-3.5-Turbo as the backend LLM, yields $+6.8$ exact match on four open-domain question answering datasets, $+14.1$ accuracy on three arithmetic reasoning datasets, and $+9.6$ accuracy on a commonsense reasoning dataset, compared to Self-Correct.
Abstract:Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could \emph{generate news reactions} to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could \emph{generate explanations} for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could \emph{merge task-specific experts} and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8\% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.
Abstract:The rapid advancement of Large Language Models (LLMs) has demonstrated their vast potential across various domains, attributed to their extensive pretraining knowledge and exceptional generalizability. However, LLMs often encounter challenges in generating harmful content when faced with problematic prompts. To address this problem, existing work attempted to implement a gradient ascent based approach to prevent LLMs from producing harmful output. While these methods can be effective, they frequently impact the model utility in responding to normal prompts. To address this gap, we introduce Selective Knowledge negation Unlearning (SKU), a novel unlearning framework for LLMs, designed to eliminate harmful knowledge while preserving utility on normal prompts. Specifically, SKU is consisted of two stages: harmful knowledge acquisition stage and knowledge negation stage. The first stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge. SKU selectively isolates and removes harmful knowledge in model parameters, ensuring the model's performance remains robust on normal prompts. Our experiments conducted across various LLM architectures demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.