Abstract:Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
Abstract:In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets. However, the large size and high computation demands of LLMs limit their practicality in many applications, especially when further fine-tuning is required. To address these limitations, smaller models are typically preferred for deployment. However, their training is hindered by the scarcity of labeled data. In contrast, unlabeled data is often readily which can be leveraged by using LLMs to generate pseudo-labels for training smaller models. This enables the smaller models (student) to acquire knowledge from LLMs(teacher) while reducing computational costs. This process introduces challenges, such as potential noisy pseudo-labels. Selecting high-quality and informative data is therefore critical to enhance model performance while improving the efficiency of data utilization. To address this, we propose LLKD that enables Learning with Less computational resources and less data for Knowledge Distillation from LLMs. LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student. Specifically, it prioritizes samples where the teacher demonstrates high confidence in its labeling, indicating reliable labels, and where the student exhibits a high information need, identifying challenging samples that require further learning. Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
Abstract:Retrieval-augmented generation (RAG) enhances the question-answering (QA) abilities of large language models (LLMs) by integrating external knowledge. However, adapting general-purpose RAG systems to specialized fields such as science and medicine poses unique challenges due to distribution shifts and limited access to domain-specific data. To tackle this, we propose SimRAG, a self-training approach that equips the LLM with joint capabilities of question answering and question generation for domain adaptation. Our method first fine-tunes the LLM on instruction-following, question-answering, and search-related data. Then, it prompts the same LLM to generate diverse domain-relevant questions from unlabeled corpora, with an additional filtering strategy to retain high-quality synthetic examples. By leveraging these synthetic examples, the LLM can improve their performance on domain-specific RAG tasks. Experiments on 11 datasets, spanning two backbone sizes and three domains, demonstrate that SimRAG outperforms baselines by 1.2\%--8.6\%.
Abstract:Online shopping platforms, such as Amazon, offer services to billions of people worldwide. Unlike web search or other search engines, product search engines have their unique characteristics, primarily featuring short queries which are mostly a combination of product attributes and structured product search space. The uniqueness of product search underscores the crucial importance of the query understanding component. However, there are limited studies focusing on exploring this impact within real-world product search engines. In this work, we aim to bridge this gap by conducting a comprehensive study and sharing our year-long journey investigating how the query understanding service impacts Amazon Product Search. Firstly, we explore how query understanding-based ranking features influence the ranking process. Next, we delve into how the query understanding system contributes to understanding the performance of a ranking model. Building on the insights gained from our study on the evaluation of the query understanding-based ranking model, we propose a query understanding-based multi-task learning framework for ranking. We present our studies and investigations using the real-world system on Amazon Search.
Abstract:Complex dialog systems often use retrieved evidence to facilitate factual responses. Such RAG (Retrieval Augmented Generation) systems retrieve from massive heterogeneous data stores that are usually architected as multiple indexes or APIs instead of a single monolithic source. For a given query, relevant evidence needs to be retrieved from one or a small subset of possible retrieval sources. Complex queries can even require multi-step retrieval. For example, a conversational agent on a retail site answering customer questions about past orders will need to retrieve the appropriate customer order first and then the evidence relevant to the customer's question in the context of the ordered product. Most RAG Agents handle such Chain-of-Thought (CoT) tasks by interleaving reasoning and retrieval steps. However, each reasoning step directly adds to the latency of the system. For large models (>100B parameters) this latency cost is significant -- in the order of multiple seconds. Multi-agent systems may classify the query to a single Agent associated with a retrieval source, though this means that a (small) classification model dictates the performance of a large language model. In this work we present REAPER (REAsoning-based PlannER) - an LLM based planner to generate retrieval plans in conversational systems. We show significant gains in latency over Agent-based systems and are able to scale easily to new and unseen use cases as compared to classification-based planning. Though our method can be applied to any RAG system, we show our results in the context of Rufus -- Amazon's conversational shopping assistant.
Abstract:With the rapid development of large language models (LLMs), aligning LLMs with human values and societal norms to ensure their reliability and safety has become crucial. Reinforcement learning with human feedback (RLHF) and Constitutional AI (CAI) have been proposed for LLM alignment. However, these methods require either heavy human annotations or explicitly pre-defined constitutions, which are labor-intensive and resource-consuming. To overcome these drawbacks, we study constitution-based LLM alignment and propose a data-driven constitution discovery and self-alignment framework called IterAlign. IterAlign leverages red teaming to unveil the weaknesses of an LLM and automatically discovers new constitutions using a stronger LLM. These constitutions are then used to guide self-correction of the base LLM. Such a constitution discovery pipeline can be run iteratively and automatically to discover new constitutions that specifically target the alignment gaps in the current LLM. Empirical results on several safety benchmark datasets and multiple base LLMs show that IterAlign successfully improves truthfulness, helpfulness, harmlessness and honesty, improving the LLM alignment by up to $13.5\%$ in harmlessness.
Abstract:E-commerce platforms typically store and structure product information and search data in a hierarchy. Efficiently categorizing user search queries into a similar hierarchical structure is paramount in enhancing user experience on e-commerce platforms as well as news curation and academic research. The significance of this task is amplified when dealing with sensitive query categorization or critical information dissemination, where inaccuracies can lead to considerable negative impacts. The inherent complexity of hierarchical query classification is compounded by two primary challenges: (1) the pronounced class imbalance that skews towards dominant categories, and (2) the inherent brevity and ambiguity of search queries that hinder accurate classification. To address these challenges, we introduce a novel framework that leverages hierarchical information through (i) enhanced representation learning that utilizes the contrastive loss to discern fine-grained instance relationships within the hierarchy, called ''instance hierarchy'', and (ii) a nuanced hierarchical classification loss that attends to the intrinsic label taxonomy, named ''label hierarchy''. Additionally, based on our observation that certain unlabeled queries share typographical similarities with labeled queries, we propose a neighborhood-aware sampling technique to intelligently select these unlabeled queries to boost the classification performance. Extensive experiments demonstrate that our proposed method is better than state-of-the-art (SOTA) on the proprietary Amazon dataset, and comparable to SOTA on the public datasets of Web of Science and RCV1-V2. These results underscore the efficacy of our proposed solution, and pave the path toward the next generation of hierarchy-aware query classification systems.
Abstract:Natural language is among the most accessible tools for explaining decisions to humans, and large pretrained language models (PLMs) have demonstrated impressive abilities to generate coherent natural language explanations (NLE). The existing NLE research perspectives do not take the audience into account. An NLE can have high textual quality, but it might not accommodate audiences' needs and preference. To address this limitation, we propose an alternative perspective, situated NLE, including a situated generation framework and a situated evaluation framework. On the generation side, we propose simple prompt engineering methods that adapt the NLEs to situations. In human studies, the annotators preferred the situated NLEs. On the evaluation side, we set up automated evaluation scores in lexical, semantic, and pragmatic categories. The scores can be used to select the most suitable prompts to generate NLEs. Situated NLE provides a perspective to conduct further research on automatic NLE generations.
Abstract:We explore ways of incorporating bilingual dictionaries to enable semi-supervised neural machine translation. Conventional back-translation methods have shown success in leveraging target side monolingual data. However, since the quality of back-translation models is tied to the size of the available parallel corpora, this could adversely impact the synthetically generated sentences in a low resource setting. We propose a simple data augmentation technique to address both this shortcoming. We incorporate widely available bilingual dictionaries that yield word-by-word translations to generate synthetic sentences. This automatically expands the vocabulary of the model while maintaining high quality content. Our method shows an appreciable improvement in performance over strong baselines.
Abstract:Pre-trained word embeddings are the primary method for transfer learning in several Natural Language Processing (NLP) tasks. Recent works have focused on using unsupervised techniques such as language modeling to obtain these embeddings. In contrast, this work focuses on extracting representations from multiple pre-trained supervised models, which enriches word embeddings with task and domain specific knowledge. Experiments performed in cross-task, cross-domain and cross-lingual settings indicate that such supervised embeddings are helpful, especially in the low-resource setting, but the extent of gains is dependent on the nature of the task and domain. We make our code publicly available.