School of Mathematical Science, Inner Mongolia University, Hohhot, China
Abstract:Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
Abstract:Large Language Models (LLMs) demonstrate remarkable performance in semantic understanding and generation, yet accurately assessing their output reliability remains a significant challenge. While numerous studies have explored calibration techniques, they primarily focus on White-Box LLMs with accessible parameters. Black-Box LLMs, despite their superior performance, pose heightened requirements for calibration techniques due to their API-only interaction constraints. Although recent researches have achieved breakthroughs in black-box LLMs calibration, a systematic survey of these methodologies is still lacking. To bridge this gap, we presents the first comprehensive survey on calibration techniques for black-box LLMs. We first define the Calibration Process of LLMs as comprising two interrelated key steps: Confidence Estimation and Calibration. Second, we conduct a systematic review of applicable methods within black-box settings, and provide insights on the unique challenges and connections in implementing these key steps. Furthermore, we explore typical applications of Calibration Process in black-box LLMs and outline promising future research directions, providing new perspectives for enhancing reliability and human-machine alignment. This is our GitHub link: https://github.com/LiangruXie/Calibration-Process-in-Black-Box-LLMs
Abstract:Understanding user intentions is challenging for online platforms. Recent work on intention knowledge graphs addresses this but often lacks focus on connecting intentions, which is crucial for modeling user behavior and predicting future actions. This paper introduces a framework to automatically generate an intention knowledge graph, capturing connections between user intentions. Using the Amazon m2 dataset, we construct an intention graph with 351 million edges, demonstrating high plausibility and acceptance. Our model effectively predicts new session intentions and enhances product recommendations, outperforming previous state-of-the-art methods and showcasing the approach's practical utility.
Abstract:Retrieval-augmented generation (RAG) enhances the question-answering (QA) abilities of large language models (LLMs) by integrating external knowledge. However, adapting general-purpose RAG systems to specialized fields such as science and medicine poses unique challenges due to distribution shifts and limited access to domain-specific data. To tackle this, we propose SimRAG, a self-training approach that equips the LLM with joint capabilities of question answering and question generation for domain adaptation. Our method first fine-tunes the LLM on instruction-following, question-answering, and search-related data. Then, it prompts the same LLM to generate diverse domain-relevant questions from unlabeled corpora, with an additional filtering strategy to retain high-quality synthetic examples. By leveraging these synthetic examples, the LLM can improve their performance on domain-specific RAG tasks. Experiments on 11 datasets, spanning two backbone sizes and three domains, demonstrate that SimRAG outperforms baselines by 1.2\%--8.6\%.
Abstract:Few-shot Chain-of-Thought (CoT) prompting has demonstrated strong performance in improving the reasoning capabilities of large language models (LLMs). While theoretical investigations have been conducted to understand CoT, the underlying transformer used in these studies isolates the CoT reasoning process into separated in-context learning steps (Stepwise ICL). In this work, we theoretically show that, compared to Stepwise ICL, the transformer gains better error correction ability and more accurate predictions if the reasoning from earlier steps (Coherent CoT) is integrated. Given that this coherent reasoning changes the behavior of the transformer, we further investigate the sensitivity of the transformer with Coherent CoT when the demonstration examples are corrupted at the inference stage. Our theoretical results indicate that the transformer is more sensitive to errors in intermediate reasoning steps than the final outcome. Building upon this observation, we propose an improvement on CoT by incorporating both correct and incorrect reasoning paths in the demonstration. Our experiments validate the effectiveness of the proposed approach.
Abstract:PET suffers from a low signal-to-noise ratio. Meanwhile, the k-space data acquisition process in MRI is time-consuming by PET-MRI systems. We aim to accelerate MRI and improve PET image quality. This paper proposed a novel joint reconstruction model by diffusion stochastic differential equations based on learning the joint probability distribution of PET and MRI. Compare the results underscore the qualitative and quantitative improvements our model brings to PET and MRI reconstruction, surpassing the current state-of-the-art methodologies. Joint PET-MRI reconstruction is a challenge in the PET-MRI system. This studies focused on the relationship extends beyond edges. In this study, PET is generated from MRI by learning joint probability distribution as the relationship.
Abstract:Online shopping platforms, such as Amazon, offer services to billions of people worldwide. Unlike web search or other search engines, product search engines have their unique characteristics, primarily featuring short queries which are mostly a combination of product attributes and structured product search space. The uniqueness of product search underscores the crucial importance of the query understanding component. However, there are limited studies focusing on exploring this impact within real-world product search engines. In this work, we aim to bridge this gap by conducting a comprehensive study and sharing our year-long journey investigating how the query understanding service impacts Amazon Product Search. Firstly, we explore how query understanding-based ranking features influence the ranking process. Next, we delve into how the query understanding system contributes to understanding the performance of a ranking model. Building on the insights gained from our study on the evaluation of the query understanding-based ranking model, we propose a query understanding-based multi-task learning framework for ranking. We present our studies and investigations using the real-world system on Amazon Search.
Abstract:Large language models (LLMs) excel in many natural language processing (NLP) tasks. However, since LLMs can only incorporate new knowledge through training or supervised fine-tuning processes, they are unsuitable for applications that demand precise, up-to-date, and private information not available in the training corpora. This precise, up-to-date, and private information is typically stored in relational databases. Thus, a promising solution is to augment LLMs with the inclusion of relational databases as external memory. This can ensure the timeliness, correctness, and consistency of data, and assist LLMs in performing complex arithmetic operations beyond their inherent capabilities. However, bridging the gap between LLMs and relational databases is challenging. It requires the awareness of databases and data values stored in databases to select correct databases and issue correct SQL queries. Besides, it is necessary for the external memory to be independent of the LLM to meet the needs of real-world applications. We introduce a novel LLM-agnostic memory architecture comprising a database selection memory, a data value memory, and relational databases. And we design an elegant pipeline to retrieve information from it. Besides, we carefully design the prompts to instruct the LLM to maximize the framework's potential. To evaluate our method, we compose a new dataset with various types of questions. Experimental results show that our framework enables LLMs to effectively answer database-related questions, which is beyond their direct ability.
Abstract:In a multi-agent system, agents share their local observations to gain global situational awareness for decision making and collaboration using a message passing system. When to send a message, how to encode a message, and how to leverage the received messages directly affect the effectiveness of the collaboration among agents. When training a multi-agent cooperative game using reinforcement learning (RL), the message passing system needs to be optimized together with the agent policies. This consequently increases the model's complexity and poses significant challenges to the convergence and performance of learning. To address this issue, we propose the Belief-map Assisted Multi-agent System (BAMS), which leverages a neuro-symbolic belief map to enhance training. The belief map decodes the agent's hidden state to provide a symbolic representation of the agent's understanding of the environment and other agent's status. The simplicity of symbolic representation allows the gathering and comparison of the ground truth information with the belief, which provides an additional channel of feedback for the learning. Compared to the sporadic and delayed feedback coming from the reward in RL, the feedback from the belief map is more consistent and reliable. Agents using BAMS can learn a more effective message passing network to better understand each other, resulting in better performance in a cooperative predator and prey game with varying levels of map complexity and compare it to previous multi-agent message passing models. The simulation results showed that BAMS reduced training epochs by 66\%, and agents who apply the BAMS model completed the game with 34.62\% fewer steps on average.
Abstract:Graph Neural Networks (GNNs) have proven to be highly effective for node classification tasks across diverse graph structural patterns. Traditionally, GNNs employ a uniform global filter, typically a low-pass filter for homophilic graphs and a high-pass filter for heterophilic graphs. However, real-world graphs often exhibit a complex mix of homophilic and heterophilic patterns, rendering a single global filter approach suboptimal. In this work, we theoretically demonstrate that a global filter optimized for one pattern can adversely affect performance on nodes with differing patterns. To address this, we introduce a novel GNN framework Node-MoE that utilizes a mixture of experts to adaptively select the appropriate filters for different nodes. Extensive experiments demonstrate the effectiveness of Node-MoE on both homophilic and heterophilic graphs.