Abstract:Graph Neural Networks (GNNs) have shown promising results in modeling graphs in various tasks. The training of GNNs, especially on specialized tasks such as bioinformatics, demands extensive expert annotations, which are expensive and usually contain sensitive information of data providers. The trained GNN models are often shared for deployment in the real world. As neural networks can memorize the training samples, the model parameters of GNNs have a high risk of leaking private training data. Our theoretical analysis shows the strong connections between trained GNN parameters and the training graphs used, confirming the training graph leakage issue. However, explorations into training data leakage from trained GNNs are rather limited. Therefore, we investigate a novel problem of stealing graphs from trained GNNs. To obtain high-quality graphs that resemble the target training set, a graph diffusion model with diffusion noise optimization is deployed as a graph generator. Furthermore, we propose a selection method that effectively leverages GNN model parameters to identify training graphs from samples generated by the graph diffusion model. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed framework in stealing training graphs from the trained GNN.
Abstract:Time series data is ubiquitous across various domains, including manufacturing, finance, and healthcare. High-quality annotations are essential for effectively understanding time series and facilitating downstream tasks; however, obtaining such annotations is challenging, particularly in mission-critical domains. In this paper, we propose TESSA, a multi-agent system designed to automatically generate both general and domain-specific annotations for time series data. TESSA introduces two agents: a general annotation agent and a domain-specific annotation agent. The general agent captures common patterns and knowledge across multiple source domains, leveraging both time-series-wise and text-wise features to generate general annotations. Meanwhile, the domain-specific agent utilizes limited annotations from the target domain to learn domain-specific terminology and generate targeted annotations. Extensive experiments on multiple synthetic and real-world datasets demonstrate that TESSA effectively generates high-quality annotations, outperforming existing methods.
Abstract:Graph Prompt Learning (GPL) has been introduced as a promising approach that uses prompts to adapt pre-trained GNN models to specific downstream tasks without requiring fine-tuning of the entire model. Despite the advantages of GPL, little attention has been given to its vulnerability to backdoor attacks, where an adversary can manipulate the model's behavior by embedding hidden triggers. Existing graph backdoor attacks rely on modifying model parameters during training, but this approach is impractical in GPL as GNN encoder parameters are frozen after pre-training. Moreover, downstream users may fine-tune their own task models on clean datasets, further complicating the attack. In this paper, we propose TGPA, a backdoor attack framework designed specifically for GPL. TGPA injects backdoors into graph prompts without modifying pre-trained GNN encoders and ensures high attack success rates and clean accuracy. To address the challenge of model fine-tuning by users, we introduce a finetuning-resistant poisoning approach that maintains the effectiveness of the backdoor even after downstream model adjustments. Extensive experiments on multiple datasets under various settings demonstrate the effectiveness of TGPA in compromising GPL models with fixed GNN encoders.
Abstract:Graph Neural Networks (GNNs) have achieved promising results in tasks such as node classification and graph classification. However, recent studies reveal that GNNs are vulnerable to backdoor attacks, posing a significant threat to their real-world adoption. Despite initial efforts to defend against specific graph backdoor attacks, there is no work on defending against various types of backdoor attacks where generated triggers have different properties. Hence, we first empirically verify that prediction variance under edge dropping is a crucial indicator for identifying poisoned nodes. With this observation, we propose using random edge dropping to detect backdoors and theoretically show that it can efficiently distinguish poisoned nodes from clean ones. Furthermore, we introduce a novel robust training strategy to efficiently counteract the impact of the triggers. Extensive experiments on real-world datasets show that our framework can effectively identify poisoned nodes, significantly degrade the attack success rate, and maintain clean accuracy when defending against various types of graph backdoor attacks with different properties.
Abstract:Recent progress in Graph Neural Networks (GNNs) has greatly enhanced the ability to model complex molecular structures for predicting properties. Nevertheless, molecular data encompasses more than just graph structures, including textual and visual information that GNNs do not handle well. To bridge this gap, we present an innovative framework that utilizes multimodal molecular data to extract insights from Large Language Models (LLMs). We introduce GALLON (Graph Learning from Large Language Model Distillation), a framework that synergizes the capabilities of LLMs and GNNs by distilling multimodal knowledge into a unified Multilayer Perceptron (MLP). This method integrates the rich textual and visual data of molecules with the structural analysis power of GNNs. Extensive experiments reveal that our distilled MLP model notably improves the accuracy and efficiency of molecular property predictions.
Abstract:Graph Neural Networks (GNNs) have shown remarkable performance in various tasks. However, recent works reveal that GNNs are vulnerable to backdoor attacks. Generally, backdoor attack poisons the graph by attaching backdoor triggers and the target class label to a set of nodes in the training graph. A GNN trained on the poisoned graph will then be misled to predict test nodes attached with trigger to the target class. Despite their effectiveness, our empirical analysis shows that triggers generated by existing methods tend to be out-of-distribution (OOD), which significantly differ from the clean data. Hence, these injected triggers can be easily detected and pruned with widely used outlier detection methods in real-world applications. Therefore, in this paper, we study a novel problem of unnoticeable graph backdoor attacks with in-distribution (ID) triggers. To generate ID triggers, we introduce an OOD detector in conjunction with an adversarial learning strategy to generate the attributes of the triggers within distribution. To ensure a high attack success rate with ID triggers, we introduce novel modules designed to enhance trigger memorization by the victim model trained on poisoned graph. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method in generating in distribution triggers that can by-pass various defense strategies while maintaining a high attack success rate.
Abstract:Pretraining on Graph Neural Networks (GNNs) has shown great power in facilitating various downstream tasks. As pretraining generally requires huge amount of data and computational resources, the pretrained GNNs are high-value Intellectual Properties (IP) of the legitimate owner. However, adversaries may illegally copy and deploy the pretrained GNN models for their downstream tasks. Though initial efforts have been made to watermark GNN classifiers for IP protection, these methods require the target classification task for watermarking, and thus are not applicable to self-supervised pretraining of GNN models. Hence, in this work, we propose a novel framework named PreGIP to watermark the pretraining of GNN encoder for IP protection while maintain the high-quality of the embedding space. PreGIP incorporates a task-free watermarking loss to watermark the embedding space of pretrained GNN encoder. A finetuning-resistant watermark injection is further deployed. Theoretical analysis and extensive experiments show the effectiveness of {\method} in IP protection and maintaining high-performance for downstream tasks.
Abstract:Graph Contrastive Learning (GCL) has emerged as a popular unsupervised graph representation learning method. However, it has been shown that GCL is vulnerable to adversarial attacks on both the graph structure and node attributes. Although empirical approaches have been proposed to enhance the robustness of GCL, the certifiable robustness of GCL is still remain unexplored. In this paper, we develop the first certifiably robust framework in GCL. Specifically, we first propose a unified criteria to evaluate and certify the robustness of GCL. We then introduce a novel technique, RES (Randomized Edgedrop Smoothing), to ensure certifiable robustness for any GCL model, and this certified robustness can be provably preserved in downstream tasks. Furthermore, an effective training method is proposed for robust GCL. Extensive experiments on real-world datasets demonstrate the effectiveness of our proposed method in providing effective certifiable robustness and enhancing the robustness of any GCL model. The source code of RES is available at https://github.com/ventr1c/RES-GCL.
Abstract:Graph Neural Networks (GNNs) have achieved promising results in various tasks such as node classification and graph classification. Recent studies find that GNNs are vulnerable to adversarial attacks. However, effective backdoor attacks on graphs are still an open problem. In particular, backdoor attack poisons the graph by attaching triggers and the target class label to a set of nodes in the training graph. The backdoored GNNs trained on the poisoned graph will then be misled to predict test nodes to target class once attached with triggers. Though there are some initial efforts in graph backdoor attacks, our empirical analysis shows that they may require a large attack budget for effective backdoor attacks and the injected triggers can be easily detected and pruned. Therefore, in this paper, we study a novel problem of unnoticeable graph backdoor attacks with limited attack budget. To fully utilize the attack budget, we propose to deliberately select the nodes to inject triggers and target class labels in the poisoning phase. An adaptive trigger generator is deployed to obtain effective triggers that are difficult to be noticed. Extensive experiments on real-world datasets against various defense strategies demonstrate the effectiveness of our proposed method in conducting effective unnoticeable backdoor attacks.
Abstract:Graph neural networks (GNNs) have achieved state-of-the-art performance in many graph-related tasks, e.g., node classification. However, recent works show that GNNs are vulnerable to evasion attacks, i.e., an attacker can slightly perturb the graph structure to fool GNN models. Existing evasion attacks to GNNs have several key drawbacks: 1) they are limited to attack two-layer GNNs; 2) they are not efficient; or/and 3) they need to know GNN model parameters. We address the above drawbacks in this paper and propose an influence-based evasion attack against GNNs. Specifically, we first introduce two influence functions, i.e., feature-label influence and label influence, that are defined on GNNs and label propagation (LP), respectively. Then, we build a strong connection between GNNs and LP in terms of influence. Next, we reformulate the evasion attack against GNNs to be related to calculating label influence on LP, which is applicable to multi-layer GNNs and does not need to know the GNN model. We also propose an efficient algorithm to calculate label influence. Finally, we evaluate our influence-based attack on three benchmark graph datasets. Our experimental results show that, compared to state-of-the-art attack, our attack can achieve comparable attack performance, but has a 5-50x speedup when attacking two-layer GNNs. Moreover, our attack is effective to attack multi-layer GNNs.