Abstract:In recent years, large language models (LLMs) have revolutionized the field of natural language processing. However, they often suffer from knowledge gaps and hallucinations. Graph retrieval-augmented generation (GraphRAG) enhances LLM reasoning by integrating structured knowledge from external graphs. However, we identify two key challenges that plague GraphRAG:(1) Retrieving noisy and irrelevant information can degrade performance and (2)Excessive reliance on external knowledge suppresses the model's intrinsic reasoning. To address these issues, we propose GraphRAG-FI (Filtering and Integration), consisting of GraphRAG-Filtering and GraphRAG-Integration. GraphRAG-Filtering employs a two-stage filtering mechanism to refine retrieved information. GraphRAG-Integration employs a logits-based selection strategy to balance external knowledge from GraphRAG with the LLM's intrinsic reasoning,reducing over-reliance on retrievals. Experiments on knowledge graph QA tasks demonstrate that GraphRAG-FI significantly improves reasoning performance across multiple backbone models, establishing a more reliable and effective GraphRAG framework.
Abstract:The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; and Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's foundational alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.
Abstract:Agents based on large language models (LLMs) have demonstrated strong capabilities in a wide range of complex, real-world applications. However, LLM agents with a compromised memory bank may easily produce harmful outputs when the past records retrieved for demonstration are malicious. In this paper, we propose a novel Memory INJection Attack, MINJA, that enables the injection of malicious records into the memory bank by only interacting with the agent via queries and output observations. These malicious records are designed to elicit a sequence of malicious reasoning steps leading to undesirable agent actions when executing the victim user's query. Specifically, we introduce a sequence of bridging steps to link the victim query to the malicious reasoning steps. During the injection of the malicious record, we propose an indication prompt to guide the agent to autonomously generate our designed bridging steps. We also propose a progressive shortening strategy that gradually removes the indication prompt, such that the malicious record will be easily retrieved when processing the victim query comes after. Our extensive experiments across diverse agents demonstrate the effectiveness of MINJA in compromising agent memory. With minimal requirements for execution, MINJA enables any user to influence agent memory, highlighting practical risks of LLM agents.
Abstract:Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
Abstract:The lifecycle of large language models (LLMs) is far more complex than that of traditional machine learning models, involving multiple training stages, diverse data sources, and varied inference methods. While prior research on data poisoning attacks has primarily focused on the safety vulnerabilities of LLMs, these attacks face significant challenges in practice. Secure data collection, rigorous data cleaning, and the multistage nature of LLM training make it difficult to inject poisoned data or reliably influence LLM behavior as intended. Given these challenges, this position paper proposes rethinking the role of data poisoning and argue that multi-faceted studies on data poisoning can advance LLM development. From a threat perspective, practical strategies for data poisoning attacks can help evaluate and address real safety risks to LLMs. From a trustworthiness perspective, data poisoning can be leveraged to build more robust LLMs by uncovering and mitigating hidden biases, harmful outputs, and hallucinations. Moreover, from a mechanism perspective, data poisoning can provide valuable insights into LLMs, particularly the interplay between data and model behavior, driving a deeper understanding of their underlying mechanisms.
Abstract:Chain-of-Thought (CoT) reasoning, which breaks down complex tasks into intermediate reasoning steps, has significantly enhanced the performance of large language models (LLMs) on challenging tasks. However, the detailed reasoning process in CoT often incurs long generation times and high computational costs, partly due to the inclusion of unnecessary steps. To address this, we propose a method to identify critical reasoning steps using perplexity as a measure of their importance: a step is deemed critical if its removal causes a significant increase in perplexity. Our method enables models to focus solely on generating these critical steps. This can be achieved through two approaches: refining demonstration examples in few-shot CoT or fine-tuning the model using selected examples that include only critical steps. Comprehensive experiments validate the effectiveness of our method, which achieves a better balance between the reasoning accuracy and efficiency of CoT.
Abstract:A fundamental challenge in understanding graph neural networks (GNNs) lies in characterizing their optimization dynamics and loss landscape geometry, critical for improving interpretability and robustness. While mode connectivity, a lens for analyzing geometric properties of loss landscapes has proven insightful for other deep learning architectures, its implications for GNNs remain unexplored. This work presents the first investigation of mode connectivity in GNNs. We uncover that GNNs exhibit distinct non-linear mode connectivity, diverging from patterns observed in fully-connected networks or CNNs. Crucially, we demonstrate that graph structure, rather than model architecture, dominates this behavior, with graph properties like homophily correlating with mode connectivity patterns. We further establish a link between mode connectivity and generalization, proposing a generalization bound based on loss barriers and revealing its utility as a diagnostic tool. Our findings further bridge theoretical insights with practical implications: they rationalize domain alignment strategies in graph learning and provide a foundation for refining GNN training paradigms.
Abstract:Retrieval-Augmented Generation (RAG) enhances the performance of LLMs across various tasks by retrieving relevant information from external sources, particularly on text-based data. For structured data, such as knowledge graphs, GraphRAG has been widely used to retrieve relevant information. However, recent studies have revealed that structuring implicit knowledge from text into graphs can benefit certain tasks, extending the application of GraphRAG from graph data to general text-based data. Despite their successful extensions, most applications of GraphRAG for text data have been designed for specific tasks and datasets, lacking a systematic evaluation and comparison between RAG and GraphRAG on widely used text-based benchmarks. In this paper, we systematically evaluate RAG and GraphRAG on well-established benchmark tasks, such as Question Answering and Query-based Summarization. Our results highlight the distinct strengths of RAG and GraphRAG across different tasks and evaluation perspectives. Inspired by these observations, we investigate strategies to integrate their strengths to improve downstream tasks. Additionally, we provide an in-depth discussion of the shortcomings of current GraphRAG approaches and outline directions for future research.
Abstract:Large Language Model (LLM) agents have become increasingly prevalent across various real-world applications. They enhance decision-making by storing private user-agent interactions in the memory module for demonstrations, introducing new privacy risks for LLM agents. In this work, we systematically investigate the vulnerability of LLM agents to our proposed Memory EXTRaction Attack (MEXTRA) under a black-box setting. To extract private information from memory, we propose an effective attacking prompt design and an automated prompt generation method based on different levels of knowledge about the LLM agent. Experiments on two representative agents demonstrate the effectiveness of MEXTRA. Moreover, we explore key factors influencing memory leakage from both the agent's and the attacker's perspectives. Our findings highlight the urgent need for effective memory safeguards in LLM agent design and deployment.
Abstract:Recent years have witnessed significant advancements in graph machine learning (GML), with its applications spanning numerous domains. However, the focus of GML has predominantly been on developing powerful models, often overlooking a crucial initial step: constructing suitable graphs from common data formats, such as tabular data. This construction process is fundamental to applying graphbased models, yet it remains largely understudied and lacks formalization. Our research aims to address this gap by formalizing the graph construction problem and proposing an effective solution. We identify two critical challenges to achieve this goal: 1. The absence of dedicated datasets to formalize and evaluate the effectiveness of graph construction methods, and 2. Existing automatic construction methods can only be applied to some specific cases, while tedious human engineering is required to generate high-quality graphs. To tackle these challenges, we present a two-fold contribution. First, we introduce a set of datasets to formalize and evaluate graph construction methods. Second, we propose an LLM-based solution, AutoG, automatically generating high-quality graph schemas without human intervention. The experimental results demonstrate that the quality of constructed graphs is critical to downstream task performance, and AutoG can generate high-quality graphs that rival those produced by human experts.