Abstract:The rapid proliferation of generative AI, especially large language models, has led to their integration into a variety of applications. A key phenomenon known as weak-to-strong generalization - where a strong model trained on a weak model's outputs surpasses the weak model in task performance - has gained significant attention. Yet, whether critical trustworthiness properties such as robustness, fairness, and privacy can generalize similarly remains an open question. In this work, we study this question by examining if a stronger model can inherit trustworthiness properties when fine-tuned on a weaker model's outputs, a process we term weak-to-strong trustworthiness generalization. To address this, we introduce two foundational training strategies: 1) Weak Trustworthiness Finetuning (Weak TFT), which leverages trustworthiness regularization during the fine-tuning of the weak model, and 2) Weak and Weak-to-Strong Trustworthiness Finetuning (Weak+WTS TFT), which extends regularization to both weak and strong models. Our experimental evaluation on real-world datasets reveals that while some trustworthiness properties, such as fairness, adversarial, and OOD robustness, show significant improvement in transfer when both models were regularized, others like privacy do not exhibit signs of weak-to-strong trustworthiness. As the first study to explore trustworthiness generalization via weak-to-strong generalization, our work provides valuable insights into the potential and limitations of weak-to-strong generalization.
Abstract:Large language models have emerged as powerful tools for general intelligence, showcasing advanced natural language processing capabilities that find applications across diverse domains. Despite their impressive performance, recent studies have highlighted the potential for significant enhancements in LLMs' task-specific performance through fine-tuning strategies like Reinforcement Learning with Human Feedback (RLHF), supervised fine-tuning (SFT), and Quantized Low-Rank Adapters (Q-LoRA) method. However, previous works have shown that while fine-tuning offers significant performance gains, it also leads to challenges such as catastrophic forgetting and privacy and safety risks. To this end, there has been little to no work in \textit{understanding the impact of fine-tuning on the reasoning capabilities of LLMs}. Our research investigates the effect of fine-tuning on the reasoning abilities of LLMs, addressing critical questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings. By exploring these dimensions, our study shows the impact of fine-tuning on LLM reasoning capabilities, where the faithfulness of CoT reasoning, on average across four datasets, decreases, highlighting potential shifts in internal mechanisms of the LLMs resulting from fine-tuning processes.
Abstract:With the growing complexity and capability of large language models, a need to understand model reasoning has emerged, often motivated by an underlying goal of controlling and aligning models. While numerous interpretability and steering methods have been proposed as solutions, they are typically designed either for understanding or for control, seldom addressing both, with the connection between interpretation and control more broadly remaining tenuous. Additionally, the lack of standardized applications, motivations, and evaluation metrics makes it difficult to assess these methods' practical utility and efficacy. To address this, we propose intervention as a fundamental goal of interpretability and introduce success criteria to evaluate how well methods are able to control model behavior through interventions. We unify and extend four popular interpretability methods--sparse autoencoders, logit lens, tuned lens, and probing--into an abstract encoder-decoder framework. This framework maps intermediate latent representations to human-interpretable feature spaces, enabling interventions on these interpretable features, which can then be mapped back to latent representations to control model outputs. We introduce two new evaluation metrics: intervention success rate and the coherence-intervention tradeoff, designed to measure the accuracy of explanations and their utility in controlling model behavior. Our findings reveal that (1) although current methods allow for intervention, they are inconsistent across models and features, (2) lens-based methods outperform others in achieving simple, concrete interventions, and (3) interventions often compromise model performance and coherence, underperforming simpler alternatives, such as prompting, for steering model behavior and highlighting a critical shortcoming of current interpretability approaches in real-world applications requiring control.
Abstract:Data Attribution (DA) methods quantify the influence of individual training data points on model outputs and have broad applications such as explainability, data selection, and noisy label identification. However, existing DA methods are often computationally intensive, limiting their applicability to large-scale machine learning models. To address this challenge, we introduce the Generalized Group Data Attribution (GGDA) framework, which computationally simplifies DA by attributing to groups of training points instead of individual ones. GGDA is a general framework that subsumes existing attribution methods and can be applied to new DA techniques as they emerge. It allows users to optimize the trade-off between efficiency and fidelity based on their needs. Our empirical results demonstrate that GGDA applied to popular DA methods such as Influence Functions, TracIn, and TRAK results in upto 10x-50x speedups over standard DA methods while gracefully trading off attribution fidelity. For downstream applications such as dataset pruning and noisy label identification, we demonstrate that GGDA significantly improves computational efficiency and maintains effectiveness, enabling practical applications in large-scale machine learning scenarios that were previously infeasible.
Abstract:While large language models (LLMs) have shown exceptional capabilities in understanding complex queries and performing sophisticated tasks, their generalization abilities are often deeply entangled with memorization, necessitating more precise evaluation. To address this challenge, we introduce Scylla, a dynamic evaluation framework that quantitatively measures the generalization abilities of LLMs. Scylla disentangles generalization from memorization via assessing model performance on both in-distribution (ID) and out-of-distribution (OOD) data through 20 tasks across 5 levels of complexity. Through extensive experiments, we uncover a non-monotonic relationship between task complexity and the performance gap between ID and OOD data, which we term the generalization valley. Specifically, this phenomenon reveals a critical threshold - referred to as critical complexity - where reliance on non-generalizable behavior peaks, indicating the upper bound of LLMs' generalization capabilities. As model size increases, the critical complexity shifts toward higher levels of task complexity, suggesting that larger models can handle more complex reasoning tasks before over-relying on memorization. Leveraging Scylla and the concept of critical complexity, we benchmark 28LLMs including both open-sourced models such as LLaMA and Qwen families, and close-sourced models like Claude and GPT, providing a more robust evaluation and establishing a clearer understanding of LLMs' generalization capabilities.
Abstract:This paper presents a novel technique for incorporating user input when learning and inferring user preferences. When trying to provide users of black-box machine learning models with actionable recourse, we often wish to incorporate their personal preferences about the ease of modifying each individual feature. These recourse finding algorithms usually require an exhaustive set of tuples associating each feature to its cost of modification. Since it is hard to obtain such costs by directly surveying humans, in this paper, we propose the use of the Bradley-Terry model to automatically infer feature-wise costs using non-exhaustive human comparison surveys. We propose that users only provide inputs comparing entire recourses, with all candidate feature modifications, determining which recourses are easier to implement relative to others, without explicit quantification of their costs. We demonstrate the efficient learning of individual feature costs using MAP estimates, and show that these non-exhaustive human surveys, which do not necessarily contain data for each feature pair comparison, are sufficient to learn an exhaustive set of feature costs, where each feature is associated with a modification cost.
Abstract:Predictive machine learning models are becoming increasingly deployed in high-stakes contexts involving sensitive personal data; in these contexts, there is a trade-off between model explainability and data privacy. In this work, we push the boundaries of this trade-off: with a focus on foundation models for image classification fine-tuning, we reveal unforeseen privacy risks of post-hoc model explanations and subsequently offer mitigation strategies for such risks. First, we construct VAR-LRT and L1/L2-LRT, two new membership inference attacks based on feature attribution explanations that are significantly more successful than existing explanation-leveraging attacks, particularly in the low false-positive rate regime that allows an adversary to identify specific training set members with confidence. Second, we find empirically that optimized differentially private fine-tuning substantially diminishes the success of the aforementioned attacks, while maintaining high model accuracy. We carry out a systematic empirical investigation of our 2 new attacks with 5 vision transformer architectures, 5 benchmark datasets, 4 state-of-the-art post-hoc explanation methods, and 4 privacy strength settings.
Abstract:Do different generative image models secretly learn similar underlying representations? We investigate this by measuring the latent space similarity of four different models: VAEs, GANs, Normalizing Flows (NFs), and Diffusion Models (DMs). Our methodology involves training linear maps between frozen latent spaces to "stitch" arbitrary pairs of encoders and decoders and measuring output-based and probe-based metrics on the resulting "stitched'' models. Our main findings are that linear maps between latent spaces of performant models preserve most visual information even when latent sizes differ; for CelebA models, gender is the most similarly represented probe-able attribute. Finally we show on an NF that latent space representations converge early in training.
Abstract:As Artificial Intelligence (AI) tools are increasingly employed in diverse real-world applications, there has been significant interest in regulating these tools. To this end, several regulatory frameworks have been introduced by different countries worldwide. For example, the European Union recently passed the AI Act, the White House issued an Executive Order on safe, secure, and trustworthy AI, and the White House Office of Science and Technology Policy issued the Blueprint for an AI Bill of Rights (AI BoR). Many of these frameworks emphasize the need for auditing and improving the trustworthiness of AI tools, underscoring the importance of safety, privacy, explainability, fairness, and human fallback options. Although these regulatory frameworks highlight the necessity of enforcement, practitioners often lack detailed guidance on implementing them. Furthermore, the extensive research on operationalizing each of these aspects is frequently buried in technical papers that are difficult for practitioners to parse. In this write-up, we address this shortcoming by providing an accessible overview of existing literature related to operationalizing regulatory principles. We provide easy-to-understand summaries of state-of-the-art literature and highlight various gaps that exist between regulatory guidelines and existing AI research, including the trade-offs that emerge during operationalization. We hope that this work not only serves as a starting point for practitioners interested in learning more about operationalizing the regulatory guidelines outlined in the Blueprint for an AI BoR but also provides researchers with a list of critical open problems and gaps between regulations and state-of-the-art AI research. Finally, we note that this is a working paper and we invite feedback in line with the purpose of this document as described in the introduction.
Abstract:As Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare, it is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior. While LLMs are known to generate CoT reasoning that is appealing to humans, prior studies have shown that these explanations do not accurately reflect the actual behavior of the underlying LLMs. In this work, we explore the promise of three broad approaches commonly employed to steer the behavior of LLMs to enhance the faithfulness of the CoT reasoning generated by LLMs: in-context learning, fine-tuning, and activation editing. Specifically, we introduce novel strategies for in-context learning, fine-tuning, and activation editing aimed at improving the faithfulness of the CoT reasoning. We then carry out extensive empirical analyses with multiple benchmark datasets to explore the promise of these strategies. Our analyses indicate that these strategies offer limited success in improving the faithfulness of the CoT reasoning, with only slight performance enhancements in controlled scenarios. Activation editing demonstrated minimal success, while fine-tuning and in-context learning achieved marginal improvements that failed to generalize across diverse reasoning and truthful question-answering benchmarks. In summary, our work underscores the inherent difficulty in eliciting faithful CoT reasoning from LLMs, suggesting that the current array of approaches may not be sufficient to address this complex challenge.