Abstract:Scene reconstruction and novel-view synthesis for large, complex, multi-story, indoor scenes is a challenging and time-consuming task. Prior methods have utilized drones for data capture and radiance fields for scene reconstruction, both of which present certain challenges. First, in order to capture diverse viewpoints with the drone's front-facing camera, some approaches fly the drone in an unstable zig-zag fashion, which hinders drone-piloting and generates motion blur in the captured data. Secondly, most radiance field methods do not easily scale to arbitrarily large number of images. This paper proposes an efficient and scalable pipeline for indoor novel-view synthesis from drone-captured 360 videos using 3D Gaussian Splatting. 360 cameras capture a wide set of viewpoints, allowing for comprehensive scene capture under a simple straightforward drone trajectory. To scale our method to large scenes, we devise a divide-and-conquer strategy to automatically split the scene into smaller blocks that can be reconstructed individually and in parallel. We also propose a coarse-to-fine alignment strategy to seamlessly match these blocks together to compose the entire scene. Our experiments demonstrate marked improvement in both reconstruction quality, i.e. PSNR and SSIM, and computation time compared to prior approaches.
Abstract:Training language models currently requires pre-determining a fixed compute budget because the typical cosine learning rate schedule depends on the total number of steps. In contrast, the Warmup-Stable-Decay (WSD) schedule uses a constant learning rate to produce a main branch of iterates that can in principle continue indefinitely without a pre-specified compute budget. Then, given any compute budget, one can branch out from the main branch at a proper at any time with a rapidly decaying learning rate to produce a strong model. Empirically, WSD generates a non-traditional loss curve: the loss remains elevated during the stable phase but sharply declines during the decay phase. Towards explaining this phenomenon, we conjecture that pretraining loss exhibits a river valley landscape, which resembles a deep valley with a river at its bottom. Under this assumption, we show that during the stable phase, the iterate undergoes large oscillations due to the high learning rate, yet it progresses swiftly along the river. During the decay phase, the rapidly dropping learning rate minimizes the iterate's oscillations, moving it closer to the river and revealing true optimization progress. Therefore, the sustained high learning rate phase and fast decaying phase are responsible for progress in the river and the mountain directions respectively, and are both critical. Our analysis predicts phenomenons consistent with empirical observations and shows that this landscape can emerge from pretraining on a simple bi-gram dataset. Inspired by the theory, we introduce WSD-S, a variant of WSD that reuses previous checkpoints' decay phases and keeps only one main branch, where we resume from a decayed checkpoint. WSD-S empirically outperforms WSD and Cyclic-Cosine in obtaining multiple language model checkpoints across various compute budgets in a single run for parameters scaling from 0.1B to 1.2B.
Abstract:The manifold hypothesis presumes that high-dimensional data lies on or near a low-dimensional manifold. While the utility of encoding geometric structure has been demonstrated empirically, rigorous analysis of its impact on the learnability of neural networks is largely missing. Several recent results have established hardness results for learning feedforward and equivariant neural networks under i.i.d. Gaussian or uniform Boolean data distributions. In this paper, we investigate the hardness of learning under the manifold hypothesis. We ask which minimal assumptions on the curvature and regularity of the manifold, if any, render the learning problem efficiently learnable. We prove that learning is hard under input manifolds of bounded curvature by extending proofs of hardness in the SQ and cryptographic settings for Boolean data inputs to the geometric setting. On the other hand, we show that additional assumptions on the volume of the data manifold alleviate these fundamental limitations and guarantee learnability via a simple interpolation argument. Notable instances of this regime are manifolds which can be reliably reconstructed via manifold learning. Looking forward, we comment on and empirically explore intermediate regimes of manifolds, which have heterogeneous features commonly found in real world data.
Abstract:In this paper we undertake a systematic study of privacy attacks against open source Large Language Models (LLMs), where an adversary has access to either the model weights, gradients, or losses, and tries to exploit them to learn something about the underlying training data. Our headline results are the first membership inference attacks (MIAs) against pre-trained LLMs that are able to simultaneously achieve high TPRs and low FPRs, and a pipeline showing that over $50\%$ (!) of the fine-tuning dataset can be extracted from a fine-tuned LLM in natural settings. We consider varying degrees of access to the underlying model, customization of the language model, and resources available to the attacker. In the pre-trained setting, we propose three new white-box MIAs: an attack based on the gradient norm, a supervised neural network classifier, and a single step loss ratio attack. All outperform existing black-box baselines, and our supervised attack closes the gap between MIA attack success against LLMs and other types of models. In fine-tuning, we find that given access to the loss of the fine-tuned and base models, a fine-tuned loss ratio attack FLoRA is able to achieve near perfect MIA peformance. We then leverage these MIAs to extract fine-tuning data from fine-tuned language models. We find that the pipeline of generating from fine-tuned models prompted with a small snippet of the prefix of each training example, followed by using FLoRa to select the most likely training sample, succeeds the majority of the fine-tuning dataset after only $3$ epochs of fine-tuning. Taken together, these findings show that highly effective MIAs are available in almost all LLM training settings, and highlight that great care must be taken before LLMs are fine-tuned on highly sensitive data and then deployed.
Abstract:Closed drafting or "pick and pass" is a popular game mechanic where each round players select a card or other playable element from their hand and pass the rest to the next player. In this paper, we establish first-principle methods for studying the interpretability, generalizability, and memory of Deep Q-Network (DQN) models playing closed drafting games. In particular, we use a popular family of closed drafting games called "Sushi Go Party", in which we achieve state-of-the-art performance. We fit decision rules to interpret the decision-making strategy of trained DRL agents by comparing them to the ranking preferences of different types of human players. As Sushi Go Party can be expressed as a set of closely-related games based on the set of cards in play, we quantify the generalizability of DRL models trained on various sets of cards, establishing a method to benchmark agent performance as a function of environment unfamiliarity. Using the explicitly calculable memory of other player's hands in closed drafting games, we create measures of the ability of DRL models to learn memory.
Abstract:Recent work has shown that Large Language Models (LLMs) can unintentionally leak sensitive information present in their training data. In this paper, we present Model Perturbations (MoPe), a new method to identify with high confidence if a given text is in the training data of a pre-trained language model, given white-box access to the models parameters. MoPe adds noise to the model in parameter space and measures the drop in log-likelihood at a given point $x$, a statistic we show approximates the trace of the Hessian matrix with respect to model parameters. Across language models ranging from $70$M to $12$B parameters, we show that MoPe is more effective than existing loss-based attacks and recently proposed perturbation-based methods. We also examine the role of training point order and model size in attack success, and empirically demonstrate that MoPe accurately approximate the trace of the Hessian in practice. Our results show that the loss of a point alone is insufficient to determine extractability -- there are training points we can recover using our method that have average loss. This casts some doubt on prior works that use the loss of a point as evidence of memorization or unlearning.
Abstract:Jokes are intentionally written to be funny, but not all jokes are created the same. Some jokes may be fit for a classroom of kindergarteners, but others are best reserved for a more mature audience. While recent work has shown impressive results on humor detection in text, here we instead investigate the more nuanced task of detecting humor subtypes, especially of the less innocent variety. To that end, we introduce a novel jokes dataset filtered from Reddit and solve the subtype classification task using a finetuned Transformer dubbed the Naughtyformer. Moreover, we show that our model is significantly better at detecting offensiveness in jokes compared to state-of-the-art methods.
Abstract:The owner-member relationship between wheels and vehicles contributes significantly to the 3D perception of vehicles, especially in embedded environments. However, to leverage this relationship we must face two major challenges: i) Traditional IoU-based heuristics have difficulty handling occluded traffic congestion scenarios. ii) The effectiveness and applicability of the solution in a vehicle-mounted system is difficult. To address these issues, we propose an innovative relationship prediction method, DeepWORD, by designing a graph convolutional network (GCN). Specifically, to improve the information richness, we use feature maps with local correlation as input to the nodes. Subsequently, we introduce a graph attention network (GAT) to dynamically correct the a priori estimation bias. Finally, we designed a dataset as a large-scale benchmark which has annotated owner-member relationship, called WORD. In the experiments we learned that the proposed method achieved state-of-the-art accuracy and real-time performance. The WORD dataset is made publicly available at https://github.com/NamespaceMain/ownermember-relationship-dataset.
Abstract:Temporal grounding aims to predict a time interval of a video clip corresponding to a natural language query input. In this work, we present EVOQUER, a temporal grounding framework incorporating an existing text-to-video grounding model and a video-assisted query generation network. Given a query and an untrimmed video, the temporal grounding model predicts the target interval, and the predicted video clip is fed into a video translation task by generating a simplified version of the input query. EVOQUER forms closed-loop learning by incorporating loss functions from both temporal grounding and query generation serving as feedback. Our experiments on two widely used datasets, Charades-STA and ActivityNet, show that EVOQUER achieves promising improvements by 1.05 and 1.31 at R@0.7. We also discuss how the query generation task could facilitate error analysis by explaining temporal grounding model behavior.
Abstract:It's worth noting that the owner-member relationship between wheels and vehicles has an significant contribution to the 3D perception of vehicles, especially in the embedded environment. However, there are currently two main challenges about the above relationship prediction: i) The traditional heuristic methods based on IoU can hardly deal with the traffic jam scenarios for the occlusion. ii) It is difficult to establish an efficient applicable solution for the vehicle-mounted system. To address these issues, we propose an innovative relationship prediction method, namely DeepWORD, by designing a graph convolution network (GCN). Specifically, we utilize the feature maps with local correlation as the input of nodes to improve the information richness. Besides, we introduce the graph attention network (GAT) to dynamically amend the prior estimation deviation. Furthermore, we establish an annotated owner-member relationship dataset called WORD as a large-scale benchmark, which will be available soon. The experiments demonstrate that our solution achieves state-of-the-art accuracy and real-time in practice.