Abstract:Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning models, lack explicit quantification of intricate and subtle parenchymal structures, including fibroglandular tissue. To address this, we propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures, and then incorporates these structures into a deep-learning-based prediction model via an attention mechanism. Our topology-informed deep learning model, \emph{TopoTxR}, leverages topology to provide enhanced insights into tissues critical for disease pathophysiology and treatment response. We empirically validate \emph{TopoTxR} using the VICTRE phantom breast dataset, showing that the topological structures extracted by our model effectively approximate the breast parenchymal structures. We further demonstrate \emph{TopoTxR}'s efficacy in predicting response to neoadjuvant chemotherapy. Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na\"ive imaging, in patients who respond favorably to therapy as achieving pathological complete response (pCR) versus those who do not. In a comparative analysis with several baselines on the publicly available I-SPY 1 dataset (N=161, including 47 patients with pCR and 114 without) and the Rutgers proprietary dataset (N=120, with 69 patients achieving pCR and 51 not), \emph{TopoTxR} demonstrates a notable improvement, achieving a 2.6\% increase in accuracy and a 4.6\% enhancement in AUC compared to the state-of-the-art method.
Abstract:As the prevalence of mental health challenges, social media has emerged as a key platform for individuals to express their emotions.Deep learning tends to be a promising solution for analyzing mental health on social media. However, black box models are often inflexible when switching between tasks, and their results typically lack explanations. With the rise of large language models (LLMs), their flexibility has introduced new approaches to the field. Also due to the generative nature, they can be prompted to explain decision-making processes. However, their performance on complex psychological analysis still lags behind deep learning. In this paper, we introduce the first multi-task Chinese Social Media Interpretable Mental Health Instructions (C-IMHI) dataset, consisting of 9K samples, which has been quality-controlled and manually validated. We also propose MentalGLM series models, the first open-source LLMs designed for explainable mental health analysis targeting Chinese social media, trained on a corpus of 50K instructions. The proposed models were evaluated on three downstream tasks and achieved better or comparable performance compared to deep learning models, generalized LLMs, and task fine-tuned LLMs. We validated a portion of the generated decision explanations with experts, showing promising results. We also evaluated the proposed models on a clinical dataset, where they outperformed other LLMs, indicating their potential applicability in the clinical field. Our models show strong performance, validated across tasks and perspectives. The decision explanations enhance usability and facilitate better understanding and practical application of the models. Both the constructed dataset and the models are publicly available via: https://github.com/zwzzzQAQ/MentalGLM.
Abstract:Fine-tuning and in-context learning (ICL) are two prevalent methods in imbuing large language models with task-specific knowledge. It is commonly believed that fine-tuning can surpass ICL given sufficient training samples as it allows the model to adjust its internal parameters based on the data. However, this paper presents a counterintuitive finding: For tasks with implicit patterns, ICL captures these patterns significantly better than fine-tuning. We developed several datasets featuring implicit patterns, such as sequences determining answers through parity or identifying reducible terms in calculations. We then evaluated the models' understanding of these patterns under both fine-tuning and ICL across models ranging from 0.5B to 7B parameters. The results indicate that models employing ICL can quickly grasp deep patterns and significantly improve accuracy. In contrast, fine-tuning, despite utilizing thousands of times more training samples than ICL, achieved only limited improvements. We also proposed circuit shift theory from a mechanistic interpretability's view to explain why ICL wins.
Abstract:Diffusion Transformer (DiT), an emerging diffusion model for image generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs stem from the static inference paradigm, which inevitably introduces redundant computation in certain diffusion timesteps and spatial regions. To address this inefficiency, we propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions during generation. Specifically, we introduce a Timestep-wise Dynamic Width (TDW) approach that adapts model width conditioned on the generation timesteps. In addition, we design a Spatial-wise Dynamic Token (SDT) strategy to avoid redundant computation at unnecessary spatial locations. Extensive experiments on various datasets and different-sized models verify the superiority of DyDiT. Notably, with <3% additional fine-tuning iterations, our method reduces the FLOPs of DiT-XL by 51%, accelerates generation by 1.73, and achieves a competitive FID score of 2.07 on ImageNet. The code is publicly available at https://github.com/NUS-HPC-AI-Lab/ Dynamic-Diffusion-Transformer.
Abstract:Diffusion models have made compelling progress on facilitating high-throughput daily production. Nevertheless, the appealing customized requirements are remain suffered from instance-level finetuning for authentic fidelity. Prior zero-shot customization works achieve the semantic consistence through the condensed injection of identity features, while addressing detailed low-level signatures through complex model configurations and subject-specific fabrications, which significantly break the statistical coherence within the overall system and limit the applicability across various scenarios. To facilitate the generic signature concentration with rectified efficiency, we present \textbf{AnyLogo}, a zero-shot region customizer with remarkable detail consistency, building upon the symbiotic diffusion system with eliminated cumbersome designs. Streamlined as vanilla image generation, we discern that the rigorous signature extraction and creative content generation are promisingly compatible and can be systematically recycled within a single denoising model. In place of the external configurations, the gemini status of the denoising model promote the reinforced subject transmission efficiency and disentangled semantic-signature space with continuous signature decoration. Moreover, the sparse recycling paradigm is adopted to prevent the duplicated risk with compressed transmission quota for diversified signature stimulation. Extensive experiments on constructed logo-level benchmarks demonstrate the effectiveness and practicability of our methods.
Abstract:Controllable character animation is an emerging task that generates character videos controlled by pose sequences from given character images. Although character consistency has made significant progress via reference UNet, another crucial factor, pose control, has not been well studied by existing methods yet, resulting in several issues: 1) The generation may fail when the input pose sequence is corrupted. 2) The hands generated using the DWPose sequence are blurry and unrealistic. 3) The generated video will be shaky if the pose sequence is not smooth enough. In this paper, we present RealisDance to handle all the above issues. RealisDance adaptively leverages three types of poses, avoiding failed generation caused by corrupted pose sequences. Among these pose types, HaMeR provides accurate 3D and depth information of hands, enabling RealisDance to generate realistic hands even for complex gestures. Besides using temporal attention in the main UNet, RealisDance also inserts temporal attention into the pose guidance network, smoothing the video from the pose condition aspect. Moreover, we introduce pose shuffle augmentation during training to further improve generation robustness and video smoothness. Qualitative experiments demonstrate the superiority of RealisDance over other existing methods, especially in hand quality.
Abstract:In recent years, diffusion models have revolutionized visual generation, outperforming traditional frameworks like Generative Adversarial Networks (GANs). However, generating images of humans with realistic semantic parts, such as hands and faces, remains a significant challenge due to their intricate structural complexity. To address this issue, we propose a novel post-processing solution named RealisHuman. The RealisHuman framework operates in two stages. First, it generates realistic human parts, such as hands or faces, using the original malformed parts as references, ensuring consistent details with the original image. Second, it seamlessly integrates the rectified human parts back into their corresponding positions by repainting the surrounding areas to ensure smooth and realistic blending. The RealisHuman framework significantly enhances the realism of human generation, as demonstrated by notable improvements in both qualitative and quantitative metrics. Code is available at https://github.com/Wangbenzhi/RealisHuman.
Abstract:The widespread adoption of cloud-based proprietary large language models (LLMs) has introduced significant challenges, including operational dependencies, privacy concerns, and the necessity of continuous internet connectivity. In this work, we introduce an LLMOps pipeline, "LlamaDuo", for the seamless migration of knowledge and abilities from service-oriented LLMs to smaller, locally manageable models. This pipeline is crucial for ensuring service continuity in the presence of operational failures, strict privacy policies, or offline requirements. Our LlamaDuo involves fine-tuning a small language model against the service LLM using a synthetic dataset generated by the latter. If the performance of the fine-tuned model falls short of expectations, it is enhanced by further fine-tuning with additional similar data created by the service LLM. This iterative process guarantees that the smaller model can eventually match or even surpass the service LLM's capabilities in specific downstream tasks, offering a practical and scalable solution for managing AI deployments in constrained environments. Extensive experiments with leading edge LLMs are conducted to demonstrate the effectiveness, adaptability, and affordability of LlamaDuo across various downstream tasks. Our pipeline implementation is available at https://github.com/deep-diver/llamaduo.
Abstract:Novel View Synthesis (NVS) and 3D generation have recently achieved prominent improvements. However, these works mainly focus on confined categories or synthetic 3D assets, which are discouraged from generalizing to challenging in-the-wild scenes and fail to be employed with 2D synthesis directly. Moreover, these methods heavily depended on camera poses, limiting their real-world applications. To overcome these issues, we propose MVInpainter, re-formulating the 3D editing as a multi-view 2D inpainting task. Specifically, MVInpainter partially inpaints multi-view images with the reference guidance rather than intractably generating an entirely novel view from scratch, which largely simplifies the difficulty of in-the-wild NVS and leverages unmasked clues instead of explicit pose conditions. To ensure cross-view consistency, MVInpainter is enhanced by video priors from motion components and appearance guidance from concatenated reference key&value attention. Furthermore, MVInpainter incorporates slot attention to aggregate high-level optical flow features from unmasked regions to control the camera movement with pose-free training and inference. Sufficient scene-level experiments on both object-centric and forward-facing datasets verify the effectiveness of MVInpainter, including diverse tasks, such as multi-view object removal, synthesis, insertion, and replacement. The project page is https://ewrfcas.github.io/MVInpainter/.
Abstract:Cognitive Behavioral Therapy (CBT) is a well-established intervention for mitigating psychological issues by modifying maladaptive cognitive and behavioral patterns. However, delivery of CBT is often constrained by resource limitations and barriers to access. Advancements in artificial intelligence (AI) have provided technical support for the digital transformation of CBT. Particularly, the emergence of pre-training models (PTMs) and large language models (LLMs) holds immense potential to support, augment, optimize and automate CBT delivery. This paper reviews the literature on integrating AI into CBT interventions. We begin with an overview of CBT. Then, we introduce the integration of AI into CBT across various stages: pre-treatment, therapeutic process, and post-treatment. Next, we summarized the datasets relevant to some CBT-related tasks. Finally, we discuss the benefits and current limitations of applying AI to CBT. We suggest key areas for future research, highlighting the need for further exploration and validation of the long-term efficacy and clinical utility of AI-enhanced CBT. The transformative potential of AI in reshaping the practice of CBT heralds a new era of more accessible, efficient, and personalized mental health interventions.