Abstract:Since COVID-19, crowd-counting tasks have gained wide applications. While supervised methods are reliable, annotation is more challenging in high-density scenes due to small head sizes and severe occlusion, whereas it's simpler in low-density scenes. Interestingly, can we train the model in low-density scenes and generalize it to high-density scenes? Therefore, we propose a low- to high-density generalization framework (L2HCount) that learns the pattern related to high-density scenes from low-density ones, enabling it to generalize well to high-density scenes. Specifically, we first introduce a High-Density Simulation Module and a Ground-Truth Generation Module to construct fake high-density images along with their corresponding ground-truth crowd annotations respectively by image-shifting technique, effectively simulating high-density crowd patterns. However, the simulated images have two issues: image blurring and loss of low-density image characteristics. Therefore, we second propose a Head Feature Enhancement Module to extract clear features in the simulated high-density scene. Third, we propose a Dual-Density Memory Encoding Module that uses two crowd memories to learn scene-specific patterns from low- and simulated high-density scenes, respectively. Extensive experiments on four challenging datasets have shown the promising performance of L2HCount.
Abstract:Action recognition is a crucial task in artificial intelligence, with significant implications across various domains. We initially perform a comprehensive analysis of seven prominent action recognition methods across five widely-used datasets. This analysis reveals a critical, yet previously overlooked, observation: as the velocity of actions increases, the performance of these methods variably declines, undermining their robustness. This decline in performance poses significant challenges for their application in real-world scenarios. Building on these findings, we introduce the Velocity-Aware Action Recognition (VA-AR) framework to obtain robust action representations across different velocities. Our principal insight is that rapid actions (e.g., the giant circle backward in uneven bars or a smash in badminton) occur within short time intervals, necessitating smaller temporal attention windows to accurately capture intricate changes. Conversely, slower actions (e.g., drinking water or wiping face) require larger windows to effectively encompass the broader context. VA-AR employs a Mixture of Window Attention (MoWA) strategy, dynamically adjusting its attention window size based on the action's velocity. This adjustment enables VA-AR to obtain a velocity-aware representation, thereby enhancing the accuracy of action recognition. Extensive experiments confirm that VA-AR achieves state-of-the-art performance on the same five datasets, demonstrating VA-AR's effectiveness across a broad spectrum of action recognition scenarios.
Abstract:The automatic reconstruction of 3D computer-aided design (CAD) models from CAD sketches has recently gained significant attention in the computer vision community. Most existing methods, however, rely on vector CAD sketches and 3D ground truth for supervision, which are often difficult to be obtained in industrial applications and are sensitive to noise inputs. We propose viewing CAD reconstruction as a specific instance of sparse-view 3D reconstruction to overcome these limitations. While this reformulation offers a promising perspective, existing 3D reconstruction methods typically require natural images and corresponding camera poses as inputs, which introduces two major significant challenges: (1) modality discrepancy between CAD sketches and natural images, and (2) difficulty of accurate camera pose estimation for CAD sketches. To solve these issues, we first transform the CAD sketches into representations resembling natural images and extract corresponding masks. Next, we manually calculate the camera poses for the orthographic views to ensure accurate alignment within the 3D coordinate system. Finally, we employ a customized sparse-view 3D reconstruction method to achieve high-quality reconstructions from aligned orthographic views. By leveraging raster CAD sketches for self-supervision, our approach eliminates the reliance on vector CAD sketches and 3D ground truth. Experiments on the Sub-Fusion360 dataset demonstrate that our proposed method significantly outperforms previous approaches in CAD reconstruction performance and exhibits strong robustness to noisy inputs.
Abstract:We introduce OmniRL, a highly generalizable in-context reinforcement learning (ICRL) model that is meta-trained on hundreds of thousands of diverse tasks. These tasks are procedurally generated by randomizing state transitions and rewards within Markov Decision Processes. To facilitate this extensive meta-training, we propose two key innovations: 1. An efficient data synthesis pipeline for ICRL, which leverages the interaction histories of diverse behavior policies; and 2. A novel modeling framework that integrates both imitation learning and reinforcement learning (RL) within the context, by incorporating prior knowledge. For the first time, we demonstrate that in-context learning (ICL) alone, without any gradient-based fine-tuning, can successfully tackle unseen Gymnasium tasks through imitation learning, online RL, or offline RL. Additionally, we show that achieving generalized ICRL capabilities-unlike task identification-oriented few-shot learning-critically depends on long trajectories generated by variant tasks and diverse behavior policies. By emphasizing the potential of ICL and departing from pre-training focused on acquiring specific skills, we further underscore the significance of meta-training aimed at cultivating the ability of ICL itself.
Abstract:Artificial General Intelligence (AGI), widely regarded as the fundamental goal of artificial intelligence, represents the realization of cognitive capabilities that enable the handling of general tasks with human-like proficiency. Researchers in brain-inspired AI seek inspiration from the operational mechanisms of the human brain, aiming to replicate its functional rules in intelligent models. Moreover, with the rapid development of large-scale models in recent years, the concept of agents has garnered increasing attention, with researchers widely recognizing it as a necessary pathway toward achieving AGI. In this article, we propose the concept of a brain-inspired AI agent and analyze how to extract relatively feasible and agent-compatible cortical region functionalities and their associated functional connectivity networks from the complex mechanisms of the human brain. Implementing these structures within an agent enables it to achieve basic cognitive intelligence akin to human capabilities. Finally, we explore the limitations and challenges for realizing brain-inspired agents and discuss their future development.
Abstract:Performing complex tasks in open environments remains challenging for robots, even when using large language models (LLMs) as the core planner. Many LLM-based planners are inefficient due to their large number of parameters and prone to inaccuracies because they operate in open-loop systems. We think the reason is that only applying LLMs as planners is insufficient. In this work, we propose DaDu-E, a robust closed-loop planning framework for embodied AI robots. Specifically, DaDu-E is equipped with a relatively lightweight LLM, a set of encapsulated robot skill instructions, a robust feedback system, and memory augmentation. Together, these components enable DaDu-E to (i) actively perceive and adapt to dynamic environments, (ii) optimize computational costs while maintaining high performance, and (iii) recover from execution failures using its memory and feedback mechanisms. Extensive experiments on real-world and simulated tasks show that DaDu-E achieves task success rates comparable to embodied AI robots with larger models as planners like COME-Robot, while reducing computational requirements by $6.6 \times$. Users are encouraged to explore our system at: \url{https://rlc-lab.github.io/dadu-e/}.
Abstract:The next ubiquitous computing platform, following personal computers and smartphones, is poised to be inherently autonomous, encompassing technologies like drones, robots, and self-driving cars. Ensuring reliability for these autonomous machines is critical. However, current resiliency solutions make fundamental trade-offs between reliability and cost, resulting in significant overhead in performance, energy consumption, and chip area. This is due to the "one-size-fits-all" approach commonly used, where the same protection scheme is applied throughout the entire software computing stack. This paper presents the key insight that to achieve high protection coverage with minimal cost, we must leverage the inherent variations in robustness across different layers of the autonomous machine software stack. Specifically, we demonstrate that various nodes in this complex stack exhibit different levels of robustness against hardware faults. Our findings reveal that the front-end of an autonomous machine's software stack tends to be more robust, whereas the back-end is generally more vulnerable. Building on these inherent robustness differences, we propose a Vulnerability-Adaptive Protection (VAP) design paradigm. In this paradigm, the allocation of protection resources - whether spatially (e.g., through modular redundancy) or temporally (e.g., via re-execution) - is made inversely proportional to the inherent robustness of tasks or algorithms within the autonomous machine system. Experimental results show that VAP provides high protection coverage while maintaining low overhead in both autonomous vehicle and drone systems.
Abstract:This study examined the public opinions of esports at the 2023 Asian Games and value co-creation during the event using an LLM-enhanced BERTopic modeling analysis. We identified five major themes representing public perceptions, as well as how major stakeholders co-created value within and beyond the esports ecosystem. Key findings highlighted the strategic use of social media marketing to influence public opinion and promote esports events and brands, emphasizing the importance of event logistics and infrastructure. Additionally, the study revealed the co-creation value contributed by stakeholders outside the traditional esports ecosystem, particularly in promoting national representation and performance. Our findings supported the ongoing efforts to legitimize esports as a sport, noting that mainstream recognition remains a challenge. The inclusion of esports as a medal event showcased broader acceptance and helped mitigate negative public perceptions. Moreover, contributions from non-traditional stakeholders underscored the value of cross-subcultural collaborations in esports.
Abstract:Embodied AI robots have the potential to fundamentally improve the way human beings live and manufacture. Continued progress in the burgeoning field of using large language models to control robots depends critically on an efficient computing substrate. In particular, today's computing systems for embodied AI robots are designed purely based on the interest of algorithm developers, where robot actions are divided into a discrete frame-basis. Such an execution pipeline creates high latency and energy consumption. This paper proposes Corki, an algorithm-architecture co-design framework for real-time embodied AI robot control. Our idea is to decouple LLM inference, robotic control and data communication in the embodied AI robots compute pipeline. Instead of predicting action for one single frame, Corki predicts the trajectory for the near future to reduce the frequency of LLM inference. The algorithm is coupled with a hardware that accelerates transforming trajectory into actual torque signals used to control robots and an execution pipeline that parallels data communication with computation. Corki largely reduces LLM inference frequency by up to 8.0x, resulting in up to 3.6x speed up. The success rate improvement can be up to 17.3%. Code is provided for re-implementation. https://github.com/hyy0613/Corki
Abstract:We introduce Constellation, a dataset of 13K images suitable for research on detection of objects in dense urban streetscapes observed from high-elevation cameras, collected for a variety of temporal conditions. The dataset addresses the need for curated data to explore problems in small object detection exemplified by the limited pixel footprint of pedestrians observed tens of meters from above. It enables the testing of object detection models for variations in lighting, building shadows, weather, and scene dynamics. We evaluate contemporary object detection architectures on the dataset, observing that state-of-the-art methods have lower performance in detecting small pedestrians compared to vehicles, corresponding to a 10% difference in average precision (AP). Using structurally similar datasets for pretraining the models results in an increase of 1.8% mean AP (mAP). We further find that incorporating domain-specific data augmentations helps improve model performance. Using pseudo-labeled data, obtained from inference outcomes of the best-performing models, improves the performance of the models. Finally, comparing the models trained using the data collected in two different time intervals, we find a performance drift in models due to the changes in intersection conditions over time. The best-performing model achieves a pedestrian AP of 92.0% with 11.5 ms inference time on NVIDIA A100 GPUs, and an mAP of 95.4%.