Abstract:Real-time 2D keypoint detection plays an essential role in computer vision. Although CNN-based and Transformer-based methods have achieved breakthrough progress, they often fail to deliver superior performance and real-time speed. This paper introduces MamKPD, the first efficient yet effective mamba-based pose estimation framework for 2D keypoint detection. The conventional Mamba module exhibits limited information interaction between patches. To address this, we propose a lightweight contextual modeling module (CMM) that uses depth-wise convolutions to model inter-patch dependencies and linear layers to distill the pose cues within each patch. Subsequently, by combining Mamba for global modeling across all patches, MamKPD effectively extracts instances' pose information. We conduct extensive experiments on human and animal pose estimation datasets to validate the effectiveness of MamKPD. Our MamKPD-L achieves 77.3% AP on the COCO dataset with 1492 FPS on an NVIDIA GTX 4090 GPU. Moreover, MamKPD achieves state-of-the-art results on the MPII dataset and competitive results on the AP-10K dataset while saving 85% of the parameters compared to ViTPose. Our project page is available at https://mamkpd.github.io/.
Abstract:Recent research on Vision-and-Language Navigation (VLN) indicates that agents suffer from poor generalization in unseen environments due to the lack of realistic training environments and high-quality path-instruction pairs. Most existing methods for constructing realistic navigation scenes have high costs, and the extension of instructions mainly relies on predefined templates or rules, lacking adaptability. To alleviate the issue, we propose InstruGen, a VLN path-instruction pairs generation paradigm. Specifically, we use YouTube house tour videos as realistic navigation scenes and leverage the powerful visual understanding and generation abilities of large multimodal models (LMMs) to automatically generate diverse and high-quality VLN path-instruction pairs. Our method generates navigation instructions with different granularities and achieves fine-grained alignment between instructions and visual observations, which was difficult to achieve with previous methods. Additionally, we design a multi-stage verification mechanism to reduce hallucinations and inconsistency of LMMs. Experimental results demonstrate that agents trained with path-instruction pairs generated by InstruGen achieves state-of-the-art performance on the R2R and RxR benchmarks, particularly in unseen environments. Code is available at https://github.com/yanyu0526/InstruGen.
Abstract:The deployment of embodied navigation agents in safety-critical environments raises concerns about their vulnerability to adversarial attacks on deep neural networks. However, current attack methods often lack practicality due to challenges in transitioning from the digital to the physical world, while existing physical attacks for object detection fail to achieve both multi-view effectiveness and naturalness. To address this, we propose a practical attack method for embodied navigation by attaching adversarial patches with learnable textures and opacity to objects. Specifically, to ensure effectiveness across varying viewpoints, we employ a multi-view optimization strategy based on object-aware sampling, which uses feedback from the navigation model to optimize the patch's texture. To make the patch inconspicuous to human observers, we introduce a two-stage opacity optimization mechanism, where opacity is refined after texture optimization. Experimental results show our adversarial patches reduce navigation success rates by about 40%, outperforming previous methods in practicality, effectiveness, and naturalness. Code is available at: [https://github.com/chen37058/Physical-Attacks-in-Embodied-Navigation].
Abstract:Sound Event Detection (SED) plays a vital role in comprehending and perceiving acoustic scenes. Previous methods have demonstrated impressive capabilities. However, they are deficient in learning features of complex scenes from heterogeneous dataset. In this paper, we introduce a novel dual-branch architecture named Mutual-Assistance Tuning and Dual-Branch Aggregating for Heterogeneous Sound Event Detection (MTDA-HSED). The MTDA-HSED architecture employs the Mutual-Assistance Audio Adapter (M3A) to effectively tackle the multi-scenario problem and uses the Dual-Branch Mid-Fusion (DBMF) module to tackle the multi-granularity problem. Specifically, M3A is integrated into the BEATs block as an adapter to improve the BEATs' performance by fine-tuning it on the multi-scenario dataset. The DBMF module connects BEATs and CNN branches, which facilitates the deep fusion of information from the BEATs and the CNN branches. Experimental results show that the proposed methods exceed the baseline of mpAUC by \textbf{$5\%$} on the DESED and MAESTRO Real datasets. Code is available at https://github.com/Visitor-W/MTDA.
Abstract:In the Sound Event Localization and Detection (SELD) task, Transformer-based models have demonstrated impressive capabilities. However, the quadratic complexity of the Transformer's self-attention mechanism results in computational inefficiencies. In this paper, we propose a network architecture for SELD called SELD-Mamba, which utilizes Mamba, a selective state-space model. We adopt the Event-Independent Network V2 (EINV2) as the foundational framework and replace its Conformer blocks with bidirectional Mamba blocks to capture a broader range of contextual information while maintaining computational efficiency. Additionally, we implement a two-stage training method, with the first stage focusing on Sound Event Detection (SED) and Direction of Arrival (DoA) estimation losses, and the second stage reintroducing the Source Distance Estimation (SDE) loss. Our experimental results on the 2024 DCASE Challenge Task3 dataset demonstrate the effectiveness of the selective state-space model in SELD and highlight the benefits of the two-stage training approach in enhancing SELD performance.
Abstract:Previous methods usually only extract the image modality's information to recognize group activity. However, mining image information is approaching saturation, making it difficult to extract richer information. Therefore, extracting complementary information from other modalities to supplement image information has become increasingly important. In fact, action labels provide clear text information to express the action's semantics, which existing methods often overlook. Thus, we propose ActivityCLIP, a plug-and-play method for mining the text information contained in the action labels to supplement the image information for enhancing group activity recognition. ActivityCLIP consists of text and image branches, where the text branch is plugged into the image branch (The off-the-shelf image-based method). The text branch includes Image2Text and relation modeling modules. Specifically, we propose the knowledge transfer module, Image2Text, which adapts image information into text information extracted by CLIP via knowledge distillation. Further, to keep our method convenient, we add fewer trainable parameters based on the relation module of the image branch to model interaction relation in the text branch. To show our method's generality, we replicate three representative methods by ActivityCLIP, which adds only limited trainable parameters, achieving favorable performance improvements for each method. We also conduct extensive ablation studies and compare our method with state-of-the-art methods to demonstrate the effectiveness of ActivityCLIP.
Abstract:Micro-expressions are nonverbal facial expressions that reveal the covert emotions of individuals, making the micro-expression recognition task receive widespread attention. However, the micro-expression recognition task is challenging due to the subtle facial motion and brevity in duration. Many 2D image-based methods have been developed in recent years to recognize MEs effectively, but, these approaches are restricted by facial texture information and are susceptible to environmental factors, such as lighting. Conversely, depth information can effectively represent motion information related to facial structure changes and is not affected by lighting. Motion information derived from facial structures can describe motion features that pixel textures cannot delineate. We proposed a network for micro-expression recognition based on facial depth information, and our experiments have demonstrated the crucial role of depth maps in the micro-expression recognition task. Initially, we transform the depth map into a point cloud and obtain the motion information for each point by aligning the initiating frame with the apex frame and performing a differential operation. Subsequently, we adjusted all point cloud motion feature input dimensions and used them as inputs for multiple point cloud networks to assess the efficacy of this representation. PointNet++ was chosen as the ultimate outcome for micro-expression recognition due to its superior performance. Our experiments show that our proposed method significantly outperforms the existing deep learning methods, including the baseline, on the $CAS(ME)^3$ dataset, which includes depth information.
Abstract:While vision-language pretrained models (VLMs) excel in various multimodal understanding tasks, their potential in fine-grained audio-visual reasoning, particularly for audio-visual question answering (AVQA), remains largely unexplored. AVQA presents specific challenges for VLMs due to the requirement of visual understanding at the region level and seamless integration with audio modality. Previous VLM-based AVQA methods merely used CLIP as a feature encoder but underutilized its knowledge, and mistreated audio and video as separate entities in a dual-stream framework as most AVQA methods. This paper proposes a new CLIP-powered target-aware single-stream (TASS) network for AVQA using the image-text matching knowledge of the pretrained model through the audio-visual matching characteristic of nature. It consists of two key components: the target-aware spatial grounding module (TSG+) and the single-stream joint temporal grounding module (JTG). Specifically, we propose a TSG+ module to transfer the image-text matching knowledge from CLIP models to our region-text matching process without corresponding ground-truth labels. Moreover, unlike previous separate dual-stream networks that still required an additional audio-visual fusion module, JTG unifies audio-visual fusion and question-aware temporal grounding in a simplified single-stream architecture. It treats audio and video as a cohesive entity and further extends the pretrained image-text knowledge to audio-text matching by preserving their temporal correlation with our proposed cross-modal synchrony (CMS) loss. Extensive experiments conducted on the MUSIC-AVQA benchmark verified the effectiveness of our proposed method over existing state-of-the-art methods.
Abstract:Multi-person pose estimation (MPPE) presents a formidable yet crucial challenge in computer vision. Most existing methods predominantly concentrate on isolated interaction either between instances or joints, which is inadequate for scenarios demanding concurrent localization of both instances and joints. This paper introduces a novel CNN-based single-stage method, named Dual-path Hierarchical Relation Network (DHRNet), to extract instance-to-joint and joint-to-instance interactions concurrently. Specifically, we design a dual-path interaction modeling module (DIM) that strategically organizes cross-instance and cross-joint interaction modeling modules in two complementary orders, enriching interaction information by integrating merits from different correlation modeling branches. Notably, DHRNet excels in joint localization by leveraging information from other instances and joints. Extensive evaluations on challenging datasets, including COCO, CrowdPose, and OCHuman datasets, showcase DHRNet's state-of-the-art performance. The code will be released at https://github.com/YHDang/dhrnet-multi-pose-estimation.
Abstract:Recent advancements in 3D reconstruction technologies have paved the way for high-quality and real-time rendering of complex 3D scenes. Despite these achievements, a notable challenge persists: it is difficult to precisely reconstruct specific objects from large scenes. Current scene reconstruction techniques frequently result in the loss of object detail textures and are unable to reconstruct object portions that are occluded or unseen in views. To address this challenge, we delve into the meticulous 3D reconstruction of specific objects within large scenes and propose a framework termed OMEGAS: Object Mesh Extraction from Large Scenes Guided by GAussian Segmentation. OMEGAS employs a multi-step approach, grounded in several excellent off-the-shelf methodologies. Specifically, initially, we utilize the Segment Anything Model (SAM) to guide the segmentation of 3D Gaussian Splatting (3DGS), thereby creating a basic 3DGS model of the target object. Then, we leverage large-scale diffusion priors to further refine the details of the 3DGS model, especially aimed at addressing invisible or occluded object portions from the original scene views. Subsequently, by re-rendering the 3DGS model onto the scene views, we achieve accurate object segmentation and effectively remove the background. Finally, these target-only images are used to improve the 3DGS model further and extract the definitive 3D object mesh by the SuGaR model. In various scenarios, our experiments demonstrate that OMEGAS significantly surpasses existing scene reconstruction methods. Our project page is at: https://github.com/CrystalWlz/OMEGAS