Abstract:In real-world datasets, noisy labels are pervasive. The challenge of learning with noisy labels (LNL) is to train a classifier that discerns the actual classes from given instances. For this, the model must identify features indicative of the authentic labels. While research indicates that genuine label information is embedded in the learned features of even inaccurately labeled data, it's often intertwined with noise, complicating its direct application. Addressing this, we introduce channel-wise contrastive learning (CWCL). This method distinguishes authentic label information from noise by undertaking contrastive learning across diverse channels. Unlike conventional instance-wise contrastive learning (IWCL), CWCL tends to yield more nuanced and resilient features aligned with the authentic labels. Our strategy is twofold: firstly, using CWCL to extract pertinent features to identify cleanly labeled samples, and secondly, progressively fine-tuning using these samples. Evaluations on several benchmark datasets validate our method's superiority over existing approaches.
Abstract:In recent years, research on learning with noisy labels has focused on devising novel algorithms that can achieve robustness to noisy training labels while generalizing to clean data. These algorithms often incorporate sophisticated techniques, such as noise modeling, label correction, and co-training. In this study, we demonstrate that a simple baseline using cross-entropy loss, combined with widely used regularization strategies like learning rate decay, model weights average, and data augmentations, can outperform state-of-the-art methods. Our findings suggest that employing a combination of regularization strategies can be more effective than intricate algorithms in tackling the challenges of learning with noisy labels. While some of these regularization strategies have been utilized in previous noisy label learning research, their full potential has not been thoroughly explored. Our results encourage a reevaluation of benchmarks for learning with noisy labels and prompt reconsideration of the role of specialized learning algorithms designed for training with noisy labels.
Abstract:Convolutional Neural Networks (CNNs) have demonstrated superiority in learning patterns, but are sensitive to label noises and may overfit noisy labels during training. The early stopping strategy averts updating CNNs during the early training phase and is widely employed in the presence of noisy labels. Motivated by biological findings that the amplitude spectrum (AS) and phase spectrum (PS) in the frequency domain play different roles in the animal's vision system, we observe that PS, which captures more semantic information, can increase the robustness of DNNs to label noise, more so than AS can. We thus propose early stops at different times for AS and PS by disentangling the features of some layer(s) into AS and PS using Discrete Fourier Transform (DFT) during training. Our proposed Phase-AmplituDe DisentangLed Early Stopping (PADDLES) method is shown to be effective on both synthetic and real-world label-noise datasets. PADDLES outperforms other early stopping methods and obtains state-of-the-art performance.