Abstract:Imagine having a conversation with a socially intelligent agent. It can attentively listen to your words and offer visual and linguistic feedback promptly. This seamless interaction allows for multiple rounds of conversation to flow smoothly and naturally. In pursuit of actualizing it, we propose INFP, a novel audio-driven head generation framework for dyadic interaction. Unlike previous head generation works that only focus on single-sided communication, or require manual role assignment and explicit role switching, our model drives the agent portrait dynamically alternates between speaking and listening state, guided by the input dyadic audio. Specifically, INFP comprises a Motion-Based Head Imitation stage and an Audio-Guided Motion Generation stage. The first stage learns to project facial communicative behaviors from real-life conversation videos into a low-dimensional motion latent space, and use the motion latent codes to animate a static image. The second stage learns the mapping from the input dyadic audio to motion latent codes through denoising, leading to the audio-driven head generation in interactive scenarios. To facilitate this line of research, we introduce DyConv, a large scale dataset of rich dyadic conversations collected from the Internet. Extensive experiments and visualizations demonstrate superior performance and effectiveness of our method. Project Page: https://grisoon.github.io/INFP/.
Abstract:Recent advances on Multi-modal Large Language Models have demonstrated that high-resolution image input is crucial for model capabilities, especially for fine-grained tasks. However, high-resolution images lead to a quadratic increase in the number of visual tokens input into LLMs, resulting in significant computational costs. Current work develop visual token compression methods to achieve efficiency improvements, often at the expense of performance. We argue that removing visual redundancy can simultaneously improve both efficiency and performance. We build a coarse-to-fine visual token compression method, with a vision-guided sampler for compressing redundant regions with low information density, and a text-guided sampler for selecting visual tokens that are strongly correlated with the user instructions.With these two modules, the proposed FocusLLaVA achieves improvements in both efficiency and performance. We validate the effectiveness of our approach on a wide range of evaluation datasets.
Abstract:We examine the implicit bias of mirror flow in univariate least squares error regression with wide and shallow neural networks. For a broad class of potential functions, we show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity. For ReLU networks, we characterize this bias through a variational problem in function space. Our analysis includes prior results for ordinary gradient flow as a special case and lifts limitations which required either an intractable adjustment of the training data or networks with skip connections. We further introduce scaled potentials and show that for these, mirror flow still exhibits lazy training but is not in the kernel regime. For networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm. A takeaway is that whereas the parameter initialization determines how strongly the curvature of the learned function is penalized at different locations of the input space, the scaled potential determines how the different magnitudes of the curvature are penalized.
Abstract:For audio-driven visual dubbing, it remains a considerable challenge to uphold and highlight speaker's persona while synthesizing accurate lip synchronization. Existing methods fall short of capturing speaker's unique speaking style or preserving facial details. In this paper, we present PersonaTalk, an attention-based two-stage framework, including geometry construction and face rendering, for high-fidelity and personalized visual dubbing. In the first stage, we propose a style-aware audio encoding module that injects speaking style into audio features through a cross-attention layer. The stylized audio features are then used to drive speaker's template geometry to obtain lip-synced geometries. In the second stage, a dual-attention face renderer is introduced to render textures for the target geometries. It consists of two parallel cross-attention layers, namely Lip-Attention and Face-Attention, which respectively sample textures from different reference frames to render the entire face. With our innovative design, intricate facial details can be well preserved. Comprehensive experiments and user studies demonstrate our advantages over other state-of-the-art methods in terms of visual quality, lip-sync accuracy and persona preservation. Furthermore, as a person-generic framework, PersonaTalk can achieve competitive performance as state-of-the-art person-specific methods. Project Page: https://grisoon.github.io/PersonaTalk/.
Abstract:Recently, prompt learning has garnered considerable attention for its success in various Vision-Language (VL) tasks. However, existing prompt-based models are primarily focused on studying prompt generation and prompt strategies with complete modality settings, which does not accurately reflect real-world scenarios where partial modality information may be missing. In this paper, we present the first comprehensive investigation into prompt learning behavior when modalities are incomplete, revealing the high sensitivity of prompt-based models to missing modalities. To this end, we propose a novel Multi-step Adaptive Prompt Learning (MuAP) framework, aiming to generate multimodal prompts and perform multi-step prompt tuning, which adaptively learns knowledge by iteratively aligning modalities. Specifically, we generate multimodal prompts for each modality and devise prompt strategies to integrate them into the Transformer model. Subsequently, we sequentially perform prompt tuning from single-stage and alignment-stage, allowing each modality-prompt to be autonomously and adaptively learned, thereby mitigating the imbalance issue caused by only textual prompts that are learnable in previous works. Extensive experiments demonstrate the effectiveness of our MuAP and this model achieves significant improvements compared to the state-of-the-art on all benchmark datasets
Abstract:Topology reasoning aims to provide a precise understanding of road scenes, enabling autonomous systems to identify safe and efficient routes. In this paper, we present RoadPainter, an innovative approach for detecting and reasoning the topology of lane centerlines using multi-view images. The core concept behind RoadPainter is to extract a set of points from each centerline mask to improve the accuracy of centerline prediction. We start by implementing a transformer decoder that integrates a hybrid attention mechanism and a real-virtual separation strategy to predict coarse lane centerlines and establish topological associations. Then, we generate centerline instance masks guided by the centerline points from the transformer decoder. Moreover, we derive an additional set of points from each mask and combine them with previously detected centerline points for further refinement. Additionally, we introduce an optional module that incorporates a Standard Definition (SD) map to further optimize centerline detection and enhance topological reasoning performance. Experimental evaluations on the OpenLane-V2 dataset demonstrate the state-of-the-art performance of RoadPainter.
Abstract:Dynamic text-attributed graphs (DyTAGs) are prevalent in various real-world scenarios, where each node and edge are associated with text descriptions, and both the graph structure and text descriptions evolve over time. Despite their broad applicability, there is a notable scarcity of benchmark datasets tailored to DyTAGs, which hinders the potential advancement in many research fields. To address this gap, we introduce Dynamic Text-attributed Graph Benchmark (DTGB), a collection of large-scale, time-evolving graphs from diverse domains, with nodes and edges enriched by dynamically changing text attributes and categories. To facilitate the use of DTGB, we design standardized evaluation procedures based on four real-world use cases: future link prediction, destination node retrieval, edge classification, and textual relation generation. These tasks require models to understand both dynamic graph structures and natural language, highlighting the unique challenges posed by DyTAGs. Moreover, we conduct extensive benchmark experiments on DTGB, evaluating 7 popular dynamic graph learning algorithms and their variants of adapting to text attributes with LLM embeddings, along with 6 powerful large language models (LLMs). Our results show the limitations of existing models in handling DyTAGs. Our analysis also demonstrates the utility of DTGB in investigating the incorporation of structural and textual dynamics. The proposed DTGB fosters research on DyTAGs and their broad applications. It offers a comprehensive benchmark for evaluating and advancing models to handle the interplay between dynamic graph structures and natural language. The dataset and source code are available at https://github.com/zjs123/DTGB.
Abstract:Commonsense question answering has demonstrated considerable potential across various applications like assistants and social robots. Although fully fine-tuned pre-trained Language Models(LM) have achieved remarkable performance in commonsense reasoning, their tendency to excessively prioritize textual information hampers the precise transfer of structural knowledge and undermines interpretability. Some studies have explored combining LMs with Knowledge Graphs(KGs) by coarsely fusing the two modalities to perform Graph Neural Network(GNN)-based reasoning that lacks a profound interaction between heterogeneous modalities. In this paper, we propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP, aiming to maintain a balance between heterogeneous knowledge and enhance the cross-modal interaction within the LM+GNNs model. In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary to boost the performance. Afterward, a structure-aware frozen PLM is employed to fully incorporate the structured and textual information from the evidence graph, where the generation of prompts is driven by graph entities and relations. Finally, a heterogeneous message-passing reasoning module is used to facilitate deep interaction of knowledge between the LM and graph-based networks. Empirical validation, conducted through extensive experiments on three benchmark datasets, demonstrates the notable performance of the proposed model. The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
Abstract:Unmanned aerial vehicles (UAVs)-enabled aerial communication provides a flexible, reliable, and cost-effective solution for a range of wireless applications. However, due to the high line-of-sight (LoS) probability, aerial communications between UAVs are vulnerable to eavesdropping attacks, particularly when multiple eavesdroppers collude. In this work, we aim to introduce distributed collaborative beamforming (DCB) into UAV swarms and handle the eavesdropper collusion by controlling the corresponding signal distributions. Specifically, we consider a two-way DCB-enabled aerial communication between two UAV swarms and construct these swarms as two UAV virtual antenna arrays. Then, we minimize the two-way known secrecy capacity and the maximum sidelobe level to avoid information leakage from the known and unknown eavesdroppers, respectively. Simultaneously, we also minimize the energy consumption of UAVs for constructing virtual antenna arrays. Due to the conflicting relationships between secure performance and energy efficiency, we consider these objectives as a multi-objective optimization problem. Following this, we propose an enhanced multi-objective swarm intelligence algorithm via the characterized properties of the problem. Simulation results show that our proposed algorithm can obtain a set of informative solutions and outperform other state-of-the-art baseline algorithms. Experimental tests demonstrate that our method can be deployed in limited computing power platforms of UAVs and is beneficial for saving computational resources.
Abstract:In this paper, we investigate an unmanned aerial vehicle (UAV)-assistant air-to-ground communication system, where multiple UAVs form a UAV-enabled virtual antenna array (UVAA) to communicate with remote base stations by utilizing collaborative beamforming. To improve the work efficiency of the UVAA, we formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to simultaneously maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs by optimizing the positions and excitation current weights of all UAVs. This problem is challenging because these two optimization objectives conflict with each other, and they are non-concave to the optimization variables. Moreover, the system is dynamic, and the cooperation among UAVs is complex, making traditional methods take much time to compute the optimization solution for a single task. In addition, as the task changes, the previously obtained solution will become obsolete and invalid. To handle these issues, we leverage the multi-agent deep reinforcement learning (MADRL) to address the UCBMOP. Specifically, we use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB, where three techniques are introduced to enhance the performance. Simulation results demonstrate that the proposed algorithm can learn a better strategy compared with other methods. Moreover, extensive experiments also demonstrate the effectiveness of the proposed techniques.