Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided communication system is investigated. A robust joint beamforming design problem under the imperfect channel state information (CSI) is formulated to maximize the weighted sum of the Jain's fairness index and the normalized system sum rate. To solve this non-convex problem, an alternating optimization (AO) algorithm is proposed, which leverages the S-Procedure, successive convex approximation (SCA), and semidefinite relaxation (SDR). Simulation results demonstrate that with proposed algorithm: 1) various trade-offs between sum rate and user fairness can be achieved; 2) a larger trade-off region can be achieved by adopting STAR-RIS compared to conventional RIS; and 3) the performance degradation caused by imperfect CSI is less than 7% with our proposed robust beamforming approach.
Abstract:Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge sources, enabling more accurate and contextually relevant responses tailored to user queries. However, these systems remain vulnerable to corpus poisoning attacks that can significantly degrade LLM performance through the injection of malicious content. To address these challenges, we propose TrustRAG, a robust framework that systematically filters compromised and irrelevant content before it reaches the language model. Our approach implements a two-stage defense mechanism: first, it employs K-means clustering to identify potential attack patterns in retrieved documents based on their semantic embeddings, effectively isolating suspicious content. Second, it leverages cosine similarity and ROUGE metrics to detect malicious documents while resolving discrepancies between the model's internal knowledge and external information through a self-assessment process. TrustRAG functions as a plug-and-play, training-free module that integrates seamlessly with any language model, whether open or closed-source, maintaining high contextual relevance while strengthening defenses against attacks. Through extensive experimental validation, we demonstrate that TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance compared to existing approaches across multiple model architectures and datasets. We have made TrustRAG available as open-source software at \url{https://github.com/HuichiZhou/TrustRAG}.
Abstract:Speech brain-computer interfaces aim to decipher what a person is trying to say from neural activity alone, restoring communication to people with paralysis who have lost the ability to speak intelligibly. The Brain-to-Text Benchmark '24 and associated competition was created to foster the advancement of decoding algorithms that convert neural activity to text. Here, we summarize the lessons learned from the competition ending on June 1, 2024 (the top 4 entrants also presented their experiences in a recorded webinar). The largest improvements in accuracy were achieved using an ensembling approach, where the output of multiple independent decoders was merged using a fine-tuned large language model (an approach used by all 3 top entrants). Performance gains were also found by improving how the baseline recurrent neural network (RNN) model was trained, including by optimizing learning rate scheduling and by using a diphone training objective. Improving upon the model architecture itself proved more difficult, however, with attempts to use deep state space models or transformers not yet appearing to offer a benefit over the RNN baseline. The benchmark will remain open indefinitely to support further work towards increasing the accuracy of brain-to-text algorithms.
Abstract:Given that visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images, a natural question arises: how well do they understand the 3D world? With the differences in architecture and training protocols (i.e., objectives, proxy tasks), a unified framework to fairly and comprehensively probe their 3D awareness is urgently needed. Existing works on 3D probing suggest single-view 2.5D estimation (e.g., depth and normal) or two-view sparse 2D correspondence (e.g., matching and tracking). Unfortunately, these tasks ignore texture awareness, and require 3D data as ground-truth, which limits the scale and diversity of their evaluation set. To address these issues, we introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images. This allows us to probe 3D awareness for geometry and texture via novel view synthesis, without requiring 3D data. Additionally, the disentanglement of 3DGS parameters - geometry ($\boldsymbol{x}, \alpha, \Sigma$) and texture ($\boldsymbol{c}$) - enables separate analysis of texture and geometry awareness. Under Feat2GS, we conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM. Building on these findings, we develop several variants that achieve state-of-the-art across diverse datasets. This makes Feat2GS useful for probing VFMs, and as a simple-yet-effective baseline for novel-view synthesis. Code and data will be made available at https://fanegg.github.io/Feat2GS/.
Abstract:Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, and some use restrictive licenses whilst claiming to be "open-source," which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed in accordance with the Model Openness Framework (MOF), a ranked classification system that evaluates AI models based on model completeness and openness, adhering to principles of open science, open source, open data, and open access. Our model achieves the highest MOF classification level of "open science" through the comprehensive release of pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints. Experiments show that our model achieves superior performance in zero-shot evaluation compared with popular 7B models and performs competitively in few-shot evaluation.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided near-field multiple-input multiple-output (MIMO) communication framework is proposed. A weighted sum rate maximization problem for the joint optimization of the active beamforming at the base station (BS) and the transmission/reflection-coefficients (TRCs) at the STAR-RIS is formulated. The resulting non-convex problem is solved by the developed block coordinate descent (BCD)-based algorithm. Numerical results illustrate that the near-field beamforming for the STAR-RIS aided MIMO communications significantly improve the achieved weighted sum rate.
Abstract:The development of sixth-generation (6G) communication technologies is confronted with the significant challenge of spectrum resource shortage. To alleviate this issue, we propose a novel simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided multiple-input multiple-output (MIMO) cognitive radio (CR) system. Specifically, the underlying secondary network in the proposed CR system reuses the same frequency resources occupied by the primary network with the help of the STAR-RIS. The secondary network sum rate maximization problem is first formulated for the STAR-RIS aided MIMO CR system. The adoption of STAR-RIS necessitates an intricate beamforming design for the considered system due to its large number of coupled coefficients. The block coordinate descent method is employed to address the formulated optimization problem. In each iteration, the beamformers at the secondary base station (SBS) are optimized by solving a quadratically constrained quadratic program (QCQP) problem. Concurrently, the STAR-RIS passive beamforming problem is resolved using tailored algorithms designed for the two phase-shift models: 1) For the independent phase-shift model, a successive convex approximation-based algorithm is proposed. 2) For the coupled phase-shift model, a penalty dual decomposition-based algorithm is conceived, in which the phase shifts and amplitudes of the STAR-RIS elements are optimized using closed-form solutions. Simulation results show that: 1) The proposed STAR-RIS aided CR communication framework can significantly enhance the sum rate of the secondary system. 2) The coupled phase-shift model results in limited performance degradation compared to the independent phase-shift model.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided integrated sensing, computing, and communication (ISCC) Internet of Robotic Things (IoRT) framework is proposed. Specifically, the full-duplex (FD) base station (BS) simultaneously receives the offloading signals from decision robots (DRs) and carries out target robot (TR) sensing. A computation rate maximization problem is formulated to optimize the sensing and receive beamformers at the BS and the STAR-RIS coefficients under the BS power constraint, the sensing signal-to-noise ratio constraint, and STAR-RIS coefficients constraints. The alternating optimization (AO) method is adopted to solve the proposed optimization problem. With fixed STAR-RIS coefficients, the sub-problem with respect to sensing and receiving beamformer at the BS is tackled with the weighted minimum mean-square error method. Given beamformers at the BS, the sub-problem with respect to STAR-RIS coefficients is tacked with the penalty method and successive convex approximation method. The overall algorithm is guaranteed to converge to at least a stationary point of the computation rate maximization problem. Our simulation results validate that the proposed STAR-RIS aided ISCC IoRT system can enhance the sum computation rate compared with the benchmark schemes.
Abstract:Cardiovascular diseases (CVDs) present significant challenges for early and accurate diagnosis. While cardiac magnetic resonance imaging (CMR) is the gold standard for assessing cardiac function and diagnosing CVDs, its high cost and technical complexity limit accessibility. In contrast, electrocardiography (ECG) offers promise for large-scale early screening. This study introduces CardiacNets, an innovative model that enhances ECG analysis by leveraging the diagnostic strengths of CMR through cross-modal contrastive learning and generative pretraining. CardiacNets serves two primary functions: (1) it evaluates detailed cardiac function indicators and screens for potential CVDs, including coronary artery disease, cardiomyopathy, pericarditis, heart failure and pulmonary hypertension, using ECG input; and (2) it enhances interpretability by generating high-quality CMR images from ECG data. We train and validate the proposed CardiacNets on two large-scale public datasets (the UK Biobank with 41,519 individuals and the MIMIC-IV-ECG comprising 501,172 samples) as well as three private datasets (FAHZU with 410 individuals, SAHZU with 464 individuals, and QPH with 338 individuals), and the findings demonstrate that CardiacNets consistently outperforms traditional ECG-only models, substantially improving screening accuracy. Furthermore, the generated CMR images provide valuable diagnostic support for physicians of all experience levels. This proof-of-concept study highlights how ECG can facilitate cross-modal insights into cardiac function assessment, paving the way for enhanced CVD screening and diagnosis at a population level.
Abstract:Imitation learning, e.g., diffusion policy, has been proven effective in various robotic manipulation tasks. However, extensive demonstrations are required for policy robustness and generalization. To reduce the demonstration reliance, we leverage spatial symmetry and propose ET-SEED, an efficient trajectory-level SE(3) equivariant diffusion model for generating action sequences in complex robot manipulation tasks. Further, previous equivariant diffusion models require the per-step equivariance in the Markov process, making it difficult to learn policy under such strong constraints. We theoretically extend equivariant Markov kernels and simplify the condition of equivariant diffusion process, thereby significantly improving training efficiency for trajectory-level SE(3) equivariant diffusion policy in an end-to-end manner. We evaluate ET-SEED on representative robotic manipulation tasks, involving rigid body, articulated and deformable object. Experiments demonstrate superior data efficiency and manipulation proficiency of our proposed method, as well as its ability to generalize to unseen configurations with only a few demonstrations. Website: https://et-seed.github.io/