Abstract:Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities, such as text, images, and audio, to perform complex tasks with high accuracy. This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications. We propose an intuitive taxonomy for categorizing the techniques used to personalize MLLMs to individual users, and discuss the techniques accordingly. Furthermore, we discuss how such techniques can be combined or adapted when appropriate, highlighting their advantages and underlying rationale. We also provide a succinct summary of personalization tasks investigated in existing research, along with the evaluation metrics commonly used. Additionally, we summarize the datasets that are useful for benchmarking personalized MLLMs. Finally, we outline critical open challenges. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and advance the development of personalized multimodal large language models.
Abstract:Causal inference and model interpretability are gaining increasing attention, particularly in the biomedical domain. Despite recent advance, decorrelating features in nonlinear environments with human-interpretable representations remains underexplored. In this study, we introduce a novel method called causal rule generation with target trial emulation framework (CRTRE), which applies randomize trial design principles to estimate the causal effect of association rules. We then incorporate such association rules for the downstream applications such as prediction of disease onsets. Extensive experiments on six healthcare datasets, including synthetic data, real-world disease collections, and MIMIC-III/IV, demonstrate the model's superior performance. Specifically, our method achieved a $\beta$ error of 0.907, outperforming DWR (1.024) and SVM (1.141). On real-world datasets, our model achieved accuracies of 0.789, 0.920, and 0.300 for Esophageal Cancer, Heart Disease, and Cauda Equina Syndrome prediction task, respectively, consistently surpassing baseline models. On the ICD code prediction tasks, it achieved AUC Macro scores of 92.8 on MIMIC-III and 96.7 on MIMIC-IV, outperforming the state-of-the-art models KEPT and MSMN. Expert evaluations further validate the model's effectiveness, causality, and interpretability.
Abstract:The massive population election simulation aims to model the preferences of specific groups in particular election scenarios. It has garnered significant attention for its potential to forecast real-world social trends. Traditional agent-based modeling (ABM) methods are constrained by their ability to incorporate complex individual background information and provide interactive prediction results. In this paper, we introduce ElectionSim, an innovative election simulation framework based on large language models, designed to support accurate voter simulations and customized distributions, together with an interactive platform to dialogue with simulated voters. We present a million-level voter pool sampled from social media platforms to support accurate individual simulation. We also introduce PPE, a poll-based presidential election benchmark to assess the performance of our framework under the U.S. presidential election scenario. Through extensive experiments and analyses, we demonstrate the effectiveness and robustness of our framework in U.S. presidential election simulations.
Abstract:Emojis have become an integral part of digital communication, enriching text by conveying emotions, tone, and intent. Existing emoji recommendation methods are primarily evaluated based on their ability to match the exact emoji a user chooses in the original text. However, they ignore the essence of users' behavior on social media in that each text can correspond to multiple reasonable emojis. To better assess a model's ability to align with such real-world emoji usage, we propose a new semantics preserving evaluation framework for emoji recommendation, which measures a model's ability to recommend emojis that maintain the semantic consistency with the user's text. To evaluate how well a model preserves semantics, we assess whether the predicted affective state, demographic profile, and attitudinal stance of the user remain unchanged. If these attributes are preserved, we consider the recommended emojis to have maintained the original semantics. The advanced abilities of Large Language Models (LLMs) in understanding and generating nuanced, contextually relevant output make them well-suited for handling the complexities of semantics preserving emoji recommendation. To this end, we construct a comprehensive benchmark to systematically assess the performance of six proprietary and open-source LLMs using different prompting techniques on our task. Our experiments demonstrate that GPT-4o outperforms other LLMs, achieving a semantics preservation score of 79.23%. Additionally, we conduct case studies to analyze model biases in downstream classification tasks and evaluate the diversity of the recommended emojis.
Abstract:Large Language Models (LLMs) and Large Multimodal Models (LMMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting LMMs to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually richer item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Additionally, we evaluate the generalizability of our framework across different LMM backbones and the robustness of the prompting strategies, offering insights for optimization. This work underscores the importance of integrating multimodal information and presents a novel solution for improving item understanding in multimodal recommendation systems.
Abstract:Many existing industrial recommender systems are sensitive to the patterns of user-item engagement. Light users, who interact less frequently, correspond to a data sparsity problem, making it difficult for the system to accurately learn and represent their preferences. On the other hand, heavy users with rich interaction history often demonstrate a variety of niche interests that are hard to be precisely captured under the standard "user-item" similarity measurement. Moreover, implementing these systems in an industrial environment necessitates that they are resource-efficient and scalable to process web-scale data under strict latency constraints. In this paper, we address these challenges by introducing an intermediate "interest" layer between users and items. We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference by clustering engagement graphs and incorporating user-interest attention. This method enhances the understanding of light users' preferences by linking them with heavy users. By integrating user-interest attention, our approach allows a more personalized similarity metric, adept at capturing the complex dynamics of user-item interactions. The use of interest as an intermediary layer fosters a balance between scalability and expressiveness in the model. Evaluations on two public datasets reveal that our method not only achieves improved recommendation performance but also demonstrates enhanced computational efficiency compared to item-level attention models. Our approach has also been deployed in multiple products at Meta, facilitating short-form video related recommendation.
Abstract:Recent advances show that two-stream approaches have achieved outstanding performance in hateful meme detection. However, hateful memes constantly evolve as new memes emerge by fusing progressive cultural ideas, making existing methods obsolete or ineffective. In this work, we explore the potential of Large Multimodal Models (LMMs) for hateful meme detection. To this end, we propose Evolver, which incorporates LMMs via Chain-of-Evolution (CoE) Prompting, by integrating the evolution attribute and in-context information of memes. Specifically, Evolver simulates the evolving and expressing process of memes and reasons through LMMs in a step-by-step manner. First, an evolutionary pair mining module retrieves the top-k most similar memes in the external curated meme set with the input meme. Second, an evolutionary information extractor is designed to summarize the semantic regularities between the paired memes for prompting. Finally, a contextual relevance amplifier enhances the in-context hatefulness information to boost the search for evolutionary processes. Extensive experiments on public FHM, MAMI, and HarM datasets show that CoE prompting can be incorporated into existing LMMs to improve their performance. More encouragingly, it can serve as an interpretive tool to promote the understanding of the evolution of social memes.
Abstract:This study seeks to identify and quantify biases in simulating political samples with Large Language Models, specifically focusing on vote choice and public opinion. Using the GPT-3.5-Turbo model, we leverage data from the American National Election Studies, German Longitudinal Election Study, Zuobiao Dataset, and China Family Panel Studies to simulate voting behaviors and public opinions. This methodology enables us to examine three types of representation bias: disparities based on the the country's language, demographic groups, and political regime types. The findings reveal that simulation performance is generally better for vote choice than for public opinions, more accurate in English-speaking countries, more effective in bipartisan systems than in multi-partisan systems, and stronger in democratic settings than in authoritarian regimes. These results contribute to enhancing our understanding and developing strategies to mitigate biases in AI applications within the field of computational social science.
Abstract:Large Vision-Language Models (LVLMs) have demonstrated outstanding performance in various general multimodal applications such as image recognition and visual reasoning, and have also shown promising potential in specialized domains. However, the application potential of LVLMs in the insurance domain-characterized by rich application scenarios and abundant multimodal data-has not been effectively explored. There is no systematic review of multimodal tasks in the insurance domain, nor a benchmark specifically designed to evaluate the capabilities of LVLMs in insurance. This gap hinders the development of LVLMs within the insurance domain. In this paper, we systematically review and distill multimodal tasks for four representative types of insurance: auto insurance, property insurance, health insurance, and agricultural insurance. We propose INS-MMBench, the first comprehensive LVLMs benchmark tailored for the insurance domain. INS-MMBench comprises a total of 2.2K thoroughly designed multiple-choice questions, covering 12 meta-tasks and 22 fundamental tasks. Furthermore, we evaluate multiple representative LVLMs, including closed-source models such as GPT-4o and open-source models like BLIP-2. This evaluation not only validates the effectiveness of our benchmark but also provides an in-depth performance analysis of current LVLMs on various multimodal tasks in the insurance domain. We hope that INS-MMBench will facilitate the further application of LVLMs in the insurance domain and inspire interdisciplinary development. Our dataset and evaluation code are available at https://github.com/FDU-INS/INS-MMBench.
Abstract:The emergence of Large Multimodal Models (LMMs) marks a significant milestone in the development of artificial intelligence. Insurance, as a vast and complex discipline, involves a wide variety of data forms in its operational processes, including text, images, and videos, thereby giving rise to diverse multimodal tasks. Despite this, there has been limited systematic exploration of multimodal tasks specific to insurance, nor a thorough investigation into how LMMs can address these challenges. In this paper, we explore GPT-4V's capabilities in the insurance domain. We categorize multimodal tasks by focusing primarily on visual aspects based on types of insurance (e.g., auto, household/commercial property, health, and agricultural insurance) and insurance stages (e.g., risk assessment, risk monitoring, and claims processing). Our experiment reveals that GPT-4V exhibits remarkable abilities in insurance-related tasks, demonstrating not only a robust understanding of multimodal content in the insurance domain but also a comprehensive knowledge of insurance scenarios. However, there are notable shortcomings: GPT-4V struggles with detailed risk rating and loss assessment, suffers from hallucination in image understanding, and shows variable support for different languages. Through this work, we aim to bridge the insurance domain with cutting-edge LMM technology, facilitate interdisciplinary exchange and development, and provide a foundation for the continued advancement and evolution of future research endeavors.