Abstract:Despite significant advancements, large language models (LLMs) still struggle with providing accurate answers when lacking domain-specific or up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external knowledge bases, but it also introduces new attack surfaces. In this paper, we investigate data extraction attacks targeting the knowledge databases of RAG systems. We demonstrate that previous attacks on RAG largely depend on the instruction-following capabilities of LLMs, and that simple fine-tuning can reduce the success rate of such attacks to nearly zero. This makes these attacks impractical since fine-tuning is a common practice when deploying LLMs in specific domains. To further reveal the vulnerability, we propose to backdoor RAG, where a small portion of poisoned data is injected during the fine-tuning phase to create a backdoor within the LLM. When this compromised LLM is integrated into a RAG system, attackers can exploit specific triggers in prompts to manipulate the LLM to leak documents from the retrieval database. By carefully designing the poisoned data, we achieve both verbatim and paraphrased document extraction. We show that with only 3\% poisoned data, our method achieves an average success rate of 79.7\% in verbatim extraction on Llama2-7B, with a ROUGE-L score of 64.21, and a 68.6\% average success rate in paraphrased extraction, with an average ROUGE score of 52.6 across four datasets. These results underscore the privacy risks associated with the supply chain when deploying RAG systems.
Abstract:Large language models (LLMs) have shown remarkable capabilities in various natural language processing tasks, yet they often struggle with maintaining factual accuracy, particularly in knowledge-intensive domains like healthcare. This study introduces LEAF: Learning and Evaluation Augmented by Fact-Checking, a novel approach designed to enhance the factual reliability of LLMs, with a focus on medical question answering (QA). LEAF utilizes a dual strategy to enhance the factual accuracy of responses from models such as Llama 3 70B Instruct and Llama 3 8B Instruct. The first strategy, Fact-Check-Then-RAG, improves Retrieval-Augmented Generation (RAG) by incorporating fact-checking results to guide the retrieval process without updating model parameters. The second strategy, Learning from Fact-Checks via Self-Training, involves supervised fine-tuning (SFT) on fact-checked responses or applying Simple Preference Optimization (SimPO) with fact-checking as a ranking mechanism, both updating LLM parameters from supervision. These findings suggest that integrating fact-checked responses whether through RAG enhancement or self-training enhances the reliability and factual correctness of LLM outputs, offering a promising solution for applications where information accuracy is crucial.
Abstract:Multimodal large language models (MLLMs) have made significant strides, yet they face challenges in the medical domain due to limited specialized knowledge. While recent medical MLLMs demonstrate strong performance in lab settings, they often struggle in real-world applications, highlighting a substantial gap between research and practice. In this paper, we seek to address this gap at various stages of the end-to-end learning pipeline, including data collection, model fine-tuning, and evaluation. At the data collection stage, we introduce SemiHVision, a dataset that combines human annotations with automated augmentation techniques to improve both medical knowledge representation and diagnostic reasoning. For model fine-tuning, we trained PMC-Cambrian-8B-AN over 2400 H100 GPU hours, resulting in performance that surpasses public medical models like HuatuoGPT-Vision-34B (79.0% vs. 66.7%) and private general models like Claude3-Opus (55.7%) on traditional benchmarks such as SLAKE and VQA-RAD. In the evaluation phase, we observed that traditional benchmarks cannot accurately reflect realistic clinical task capabilities. To overcome this limitation and provide more targeted guidance for model evaluation, we introduce the JAMA Clinical Challenge, a novel benchmark specifically designed to evaluate diagnostic reasoning. On this benchmark, PMC-Cambrian-AN achieves state-of-the-art performance with a GPT-4 score of 1.29, significantly outperforming HuatuoGPT-Vision-34B (1.13) and Claude3-Opus (1.17), demonstrating its superior diagnostic reasoning abilities.
Abstract:Artificial intelligence (AI) and large language models (LLMs) in healthcare require advanced clinical skills (CS), yet current benchmarks fail to evaluate these comprehensively. We introduce MedQA-CS, an AI-SCE framework inspired by medical education's Objective Structured Clinical Examinations (OSCEs), to address this gap. MedQA-CS evaluates LLMs through two instruction-following tasks, LLM-as-medical-student and LLM-as-CS-examiner, designed to reflect real clinical scenarios. Our contributions include developing MedQA-CS, a comprehensive evaluation framework with publicly available data and expert annotations, and providing the quantitative and qualitative assessment of LLMs as reliable judges in CS evaluation. Our experiments show that MedQA-CS is a more challenging benchmark for evaluating clinical skills than traditional multiple-choice QA benchmarks (e.g., MedQA). Combined with existing benchmarks, MedQA-CS enables a more comprehensive evaluation of LLMs' clinical capabilities for both open- and closed-source LLMs.
Abstract:This paper presents our team's participation in the MEDIQA-ClinicalNLP2024 shared task B. We present a novel approach to diagnosing clinical dermatology cases by integrating large multimodal models, specifically leveraging the capabilities of GPT-4V under a retriever and a re-ranker framework. Our investigation reveals that GPT-4V, when used as a retrieval agent, can accurately retrieve the correct skin condition 85% of the time using dermatological images and brief patient histories. Additionally, we empirically show that Naive Chain-of-Thought (CoT) works well for retrieval while Medical Guidelines Grounded CoT is required for accurate dermatological diagnosis. Further, we introduce a Multi-Agent Conversation (MAC) framework and show its superior performance and potential over the best CoT strategy. The experiments suggest that using naive CoT for retrieval and multi-agent conversation for critique-based diagnosis, GPT-4V can lead to an early and accurate diagnosis of dermatological conditions. The implications of this work extend to improving diagnostic workflows, supporting dermatological education, and enhancing patient care by providing a scalable, accessible, and accurate diagnostic tool.
Abstract:With the explosive growth of medical data and the rapid development of artificial intelligence technology, precision medicine has emerged as a key to enhancing the quality and efficiency of healthcare services. In this context, Large Language Models (LLMs) play an increasingly vital role in medical knowledge acquisition and question-answering systems. To further improve the performance of these systems in the medical domain, we introduce an innovative method that jointly trains an Information Retrieval (IR) system and an LLM during the fine-tuning phase. This approach, which we call Joint Medical LLM and Retrieval Training (JMLR), is designed to overcome the challenges faced by traditional models in handling medical question-answering tasks. By employing a synchronized training mechanism, JMLR reduces the demand for computational resources and enhances the model's ability to leverage medical knowledge for reasoning and answering questions. Our experimental results demonstrate that JMLR-13B (81.2% on Amboos, 61.3% on MedQA) outperforms models using conventional pre-training and fine-tuning Meditron-70B (76.4% on AMBOSS, 60.3% on MedQA). For models of the same 7B scale, JMLR-7B(68.7% on Amboos, 51.7% on MedQA) significantly outperforms other public models (Meditron-7B: 50.1%, 47.9%), proving its superiority in terms of cost (our training time: 37 hours, traditional method: 144 hours), efficiency, and effectiveness in medical question-answering tasks. Through this work, we provide a new and efficient knowledge enhancement tool for healthcare, demonstrating the great potential of integrating IR and LLM training in precision medical information retrieval and question-answering systems.
Abstract:The detailed clinical records drafted by doctors after each patient's visit are crucial for medical practitioners and researchers. Automating the creation of these notes with language models can reduce the workload of doctors. However, training such models can be difficult due to the limited public availability of conversations between patients and doctors. In this paper, we introduce NoteChat, a cooperative multi-agent framework leveraging Large Language Models (LLMs) for generating synthetic doctor-patient conversations conditioned on clinical notes. NoteChat consists of Planning, Roleplay, and Polish modules. We provide a comprehensive automatic and human evaluation of NoteChat, comparing it with state-of-the-art models, including OpenAI's ChatGPT and GPT-4. Results demonstrate that NoteChat facilitates high-quality synthetic doctor-patient conversations, underscoring the untapped potential of LLMs in healthcare. This work represents the first instance of multiple LLMs cooperating to complete a doctor-patient conversation conditioned on clinical notes, offering promising avenues for the intersection of AI and healthcare
Abstract:This paper presents UMASS_BioNLP team participation in the MEDIQA-Chat 2023 shared task for Task-A and Task-C. We focus especially on Task-C and propose a novel LLMs cooperation system named a doctor-patient loop to generate high-quality conversation data sets. The experiment results demonstrate that our approaches yield reasonable performance as evaluated by automatic metrics such as ROUGE, medical concept recall, BLEU, and Self-BLEU. Furthermore, we conducted a comparative analysis between our proposed method and ChatGPT and GPT-4. This analysis also investigates the potential of utilizing cooperation LLMs to generate high-quality datasets.
Abstract:Causal inference and model interpretability research are gaining increasing attention, especially in the domains of healthcare and bioinformatics. Despite recent successes in this field, decorrelating features under nonlinear environments with human interpretable representations has not been adequately investigated. To address this issue, we introduce a novel method with a variable decorrelation regularizer to handle both linear and nonlinear confounding. Moreover, we employ association rules as new representations using association rule mining based on the original features to further proximate human decision patterns to increase model interpretability. Extensive experiments are conducted on four healthcare datasets (one synthetically generated and three real-world collections on different diseases). Quantitative results in comparison to baseline approaches on parameter estimation and causality computation indicate the model's superior performance. Furthermore, expert evaluation given by healthcare professionals validates the effectiveness and interpretability of the proposed model.
Abstract:While the long-term effects of COVID-19 are yet to be determined, its immediate impact on crowdfunding is nonetheless significant. This study takes a computational approach to more deeply comprehend this change. Using a unique data set of all the campaigns published over the past two years on GoFundMe, we explore the factors that have led to the successful funding of a crowdfunding project. In particular, we study a corpus of crowdfunded projects, analyzing cover images and other variables commonly present on crowdfunding sites. Furthermore, we construct a classifier and a regression model to assess the significance of features based on XGBoost. In addition, we employ counterfactual analysis to investigate the causality between features and the success of crowdfunding. More importantly, sentiment analysis and the paired sample t-test are performed to examine the differences in crowdfunding campaigns before and after the COVID-19 outbreak that started in March 2020. First, we note that there is significant racial disparity in crowdfunding success. Second, we find that sad emotion expressed through the campaign's description became significant after the COVID-19 outbreak. Considering all these factors, our findings shed light on the impact of COVID-19 on crowdfunding campaigns.