Abstract:Benchmark Data Contamination (BDC)-the inclusion of benchmark testing samples in the training set-has raised increasing concerns in Large Language Model (LLM) evaluation, leading to falsely inflated performance estimates and undermining evaluation reliability. To address this, researchers have proposed various mitigation strategies to update existing benchmarks, including modifying original questions or generating new ones based on them. However, a rigorous examination of the effectiveness of these mitigation strategies remains lacking. In this paper, we design a systematic and controlled pipeline along with two novel metrics-fidelity and contamination resistance-to provide a fine-grained and comprehensive assessment of existing BDC mitigation strategies. Previous assessment methods, such as accuracy drop and accuracy matching, focus solely on aggregate accuracy, often leading to incomplete or misleading conclusions. Our metrics address this limitation by emphasizing question-level evaluation result matching. Extensive experiments with 10 LLMs, 5 benchmarks, 20 BDC mitigation strategies, and 2 contamination scenarios reveal that no existing strategy significantly improves resistance over the vanilla case (i.e., no benchmark update) across all benchmarks, and none effectively balances fidelity and contamination resistance. These findings underscore the urgent need for designing more effective BDC mitigation strategies. Our code repository is available at https://github.com/ASTRAL-Group/BDC_mitigation_assessment.
Abstract:Most current end-to-end (E2E) autonomous driving algorithms are built on standard vehicles in structured transportation scenarios, lacking exploration of robot navigation for unstructured scenarios such as auxiliary roads, campus roads, and indoor settings. This paper investigates E2E robot navigation in unstructured road environments. First, we introduce two data collection pipelines - one for real-world robot data and another for synthetic data generated using the Isaac Sim simulator, which together produce an unstructured robotics navigation dataset -- FreeWorld Dataset. Second, we fine-tuned an efficient E2E autonomous driving model -- VAD -- using our datasets to validate the performance and adaptability of E2E autonomous driving models in these environments. Results demonstrate that fine-tuning through our datasets significantly enhances the navigation potential of E2E autonomous driving models in unstructured robotic environments. Thus, this paper presents the first dataset targeting E2E robot navigation tasks in unstructured scenarios, and provides a benchmark based on vision-based E2E autonomous driving algorithms to facilitate the development of E2E navigation technology for logistics and service robots. The project is available on Github.
Abstract:The advent of Large Vision-Language Models (LVLMs) has advanced the video-based tasks, such as video captioning and video understanding. Some previous research indicates that taking texts in videos as input can further improve the performance of video understanding. As a type of indispensable information in short videos or movies, subtitles can assist LVLMs to better understand videos. Most existing methods for video subtitle extraction are based on a multi-stage framework, handling each frame independently. They can hardly exploit the temporal information of videos. Although some LVLMs exhibit the robust OCR capability, predicting accurate timestamps for subtitle texts is still challenging. In this paper, we propose an End-to-end Video Subtitle Extraction method, called EVE, which consists of three modules: a vision encoder, an adapter module, and a large language model. To effectively compress the visual tokens from the vision encoder, we propose a novel adapter InterleavedVT to interleave two modalities. It contains a visual compressor and a textual region compressor. The proposed InterleavedVT exploits both the merits of average pooling and Q-Former in token compression. Taking the temporal information of videos into account, we introduce a sliding-window mechanism in the textual region compressor. To benchmark the video subtitle extraction task, we propose a large dataset ViSa including 2.5M videos. Extensive experiments on ViSa demonstrate that the proposed EVE can outperform existing open-sourced tools and LVLMs.
Abstract:Multi-frame infrared small target detection (IRSTD) plays a crucial role in low-altitude and maritime surveillance. The hybrid architecture combining CNNs and Transformers shows great promise for enhancing multi-frame IRSTD performance. In this paper, we propose LVNet, a simple yet powerful hybrid architecture that redefines low-level feature learning in hybrid frameworks for multi-frame IRSTD. Our key insight is that the standard linear patch embeddings in Vision Transformers are insufficient for capturing the scale-sensitive local features critical to infrared small targets. To address this limitation, we introduce a multi-scale CNN frontend that explicitly models local features by leveraging the local spatial bias of convolution. Additionally, we design a U-shaped video Transformer for multi-frame spatiotemporal context modeling, effectively capturing the motion characteristics of targets. Experiments on the publicly available datasets IRDST and NUDT-MIRSDT demonstrate that LVNet outperforms existing state-of-the-art methods. Notably, compared to the current best-performing method, LMAFormer, LVNet achieves an improvement of 5.63\% / 18.36\% in nIoU, while using only 1/221 of the parameters and 1/92 / 1/21 of the computational cost. Ablation studies further validate the importance of low-level representation learning in hybrid architectures. Our code and trained models are available at https://github.com/ZhihuaShen/LVNet.
Abstract:High-precision control tasks present substantial challenges for reinforcement learning (RL) algorithms, frequently resulting in suboptimal performance attributed to network approximation inaccuracies and inadequate sample quality.These issues are exacerbated when the task requires the agent to achieve a precise goal state, as is common in robotics and other real-world applications.We introduce Adviser-Actor-Critic (AAC), designed to address the precision control dilemma by combining the precision of feedback control theory with the adaptive learning capability of RL and featuring an Adviser that mentors the actor to refine control actions, thereby enhancing the precision of goal attainment.Finally, through benchmark tests, AAC outperformed standard RL algorithms in precision-critical, goal-conditioned tasks, demonstrating AAC's high precision, reliability, and robustness.Code are available at: https://anonymous.4open.science/r/Adviser-Actor-Critic-8AC5.
Abstract:Colorization is a traditional computer vision task and it plays an important role in many time-consuming tasks, such as old film restoration. Existing methods suffer from unsaturated color and temporally inconsistency. In this paper, we propose a novel pipeline to overcome the challenges. We regard the colorization task as a generative task and introduce Stable Video Diffusion (SVD) as our base model. We design a palette-based color guider to assist the model in generating vivid and consistent colors. The color context introduced by the palette not only provides guidance for color generation, but also enhances the stability of the generated colors through a unified color context across multiple sequences. Experiments demonstrate that the proposed method can provide vivid and stable colors for videos, surpassing previous methods.
Abstract:Modeling spatial heterogeneity in the data generation process is essential for understanding and predicting geographical phenomena. Despite their prevalence in geospatial tasks, neural network models usually assume spatial stationarity, which could limit their performance in the presence of spatial process heterogeneity. By allowing model parameters to vary over space, several approaches have been proposed to incorporate spatial heterogeneity into neural networks. However, current geographically weighting approaches are ineffective on graph neural networks, yielding no significant improvement in prediction accuracy. We assume the crux lies in the over-fitting risk brought by a large number of local parameters. Accordingly, we propose to model spatial process heterogeneity at the regional level rather than at the individual level, which largely reduces the number of spatially varying parameters. We further develop a heuristic optimization procedure to learn the region partition adaptively in the process of model training. Our proposed spatial-heterogeneity-aware graph convolutional network, named RegionGCN, is applied to the spatial prediction of county-level vote share in the 2016 US presidential election based on socioeconomic attributes. Results show that RegionGCN achieves significant improvement over the basic and geographically weighted GCNs. We also offer an exploratory analysis tool for the spatial variation of non-linear relationships through ensemble learning of regional partitions from RegionGCN. Our work contributes to the practice of Geospatial Artificial Intelligence (GeoAI) in tackling spatial heterogeneity.
Abstract:We propose a modular modeling framework designed to enhance the capture and validation of uncertainty in autonomous vehicle (AV) trajectory prediction. Departing from traditional deterministic methods, our approach employs a flexible, end-to-end differentiable probabilistic encoder-decoder architecture. This modular design allows the encoder and decoder to be trained independently, enabling seamless adaptation to diverse traffic scenarios without retraining the entire system. Our key contributions include: (1) a probabilistic heatmap predictor that generates context-aware occupancy grids for dynamic forecasting, (2) a modular training approach that supports independent component training and flexible adaptation, and (3) a structured validation scheme leveraging uncertainty metrics to evaluate robustness under high-risk conditions. To highlight the benefits of our framework, we benchmark it against an end-to-end baseline, demonstrating faster convergence, improved stability, and flexibility. Experimental results validate these advantages, showcasing the capacity of the framework to efficiently handle complex scenarios while ensuring reliable predictions and robust uncertainty representation. This modular design offers significant practical utility and scalability for real-world autonomous driving applications.
Abstract:Detecting hate speech in online content is essential to ensuring safer digital spaces. While significant progress has been made in text and meme modalities, video-based hate speech detection remains under-explored, hindered by a lack of annotated datasets and the high cost of video annotation. This gap is particularly problematic given the growing reliance on large models, which demand substantial amounts of training data. To address this challenge, we leverage meme datasets as both a substitution and an augmentation strategy for training hateful video detection models. Our approach introduces a human-assisted reannotation pipeline to align meme dataset labels with video datasets, ensuring consistency with minimal labeling effort. Using two state-of-the-art vision-language models, we demonstrate that meme data can substitute for video data in resource-scarce scenarios and augment video datasets to achieve further performance gains. Our results consistently outperform state-of-the-art benchmarks, showcasing the potential of cross-modal transfer learning for advancing hateful video detection. Dataset and code are available at https://github.com/Social-AI-Studio/CrossModalTransferLearning.
Abstract:Sparse continuous policies are distributions that can choose some actions at random yet keep strictly zero probability for the other actions, which are radically different from the Gaussian. They have important real-world implications, e.g. in modeling safety-critical tasks like medicine. The combination of offline reinforcement learning and sparse policies provides a novel paradigm that enables learning completely from logged datasets a safety-aware sparse policy. However, sparse policies can cause difficulty with the existing offline algorithms which require evaluating actions that fall outside of the current support. In this paper, we propose the first offline policy optimization algorithm that tackles this challenge: Fat-to-Thin Policy Optimization (FtTPO). Specifically, we maintain a fat (heavy-tailed) proposal policy that effectively learns from the dataset and injects knowledge to a thin (sparse) policy, which is responsible for interacting with the environment. We instantiate FtTPO with the general $q$-Gaussian family that encompasses both heavy-tailed and sparse policies and verify that it performs favorably in a safety-critical treatment simulation and the standard MuJoCo suite. Our code is available at \url{https://github.com/lingweizhu/fat2thin}.