Abstract:While 3D object bounding box (bbox) representation has been widely used in autonomous driving perception, it lacks the ability to capture the precise details of an object's intrinsic geometry. Recently, occupancy has emerged as a promising alternative for 3D scene perception. However, constructing a high-resolution occupancy map remains infeasible for large scenes due to computational constraints. Recognizing that foreground objects only occupy a small portion of the scene, we introduce object-centric occupancy as a supplement to object bboxes. This representation not only provides intricate details for detected objects but also enables higher voxel resolution in practical applications. We advance the development of object-centric occupancy perception from both data and algorithm perspectives. On the data side, we construct the first object-centric occupancy dataset from scratch using an automated pipeline. From the algorithmic standpoint, we introduce a novel object-centric occupancy completion network equipped with an implicit shape decoder that manages dynamic-size occupancy generation. This network accurately predicts the complete object-centric occupancy volume for inaccurate object proposals by leveraging temporal information from long sequences. Our method demonstrates robust performance in completing object shapes under noisy detection and tracking conditions. Additionally, we show that our occupancy features significantly enhance the detection results of state-of-the-art 3D object detectors, especially for incomplete or distant objects in the Waymo Open Dataset.
Abstract:This paper considers a hybrid reconfigurable intelligent surface (RIS) assisted integrated sensing and communication (ISAC) system, where each RIS element can flexibly switch between the active and passive modes. Subject to the signal-to-interference-plus-noise ratio (SINR) constraint for each communication user (CU) and the transmit power constraints for both the base station (BS) and the active RIS elements, with the objective of maximizing the minimum beampattern gain among multiple targets, we jointly optimize the BS transmit beamforming for ISAC and the mode selection of each RIS reflecting element, as well as the RIS reflection coefficient matrix. Such formulated joint hybrid-RIS assisted ISAC design problem is a mixed-integer nonlinear program, which is decomposed into two low-dimensional subproblems being solved in an alternating manner. Specifically, by using the semidefinite relaxation (SDR) technique along with the rank-one beamforming construction process, we efficiently obtain the optimal ISAC transmit beamforming design at the BS. Via the SDR and successive convex approximation (SCA) techniques, we jointly determine the active/passive mode selection and reflection coefficient for each RIS element. Numerical results demonstrate that the proposed design solution is significantly superior to the existing baseline solutions.
Abstract:From 5G onwards, Non-Terrestrial Networks (NTNs) have emerged as a key component of future network architectures. Leveraging Low Earth Orbit (LEO) satellite constellations, NTNs are capable of building a space Internet and present a paradigm shift in delivering mobile services to even the most remote regions on Earth. However, the extensive coverage and rapid movement of LEO satellites pose unique challenges for NTN networking, including user equipment (UE) access and inter-satellite delivery, which directly impact the quality of service (QoS) and data transmission continuity. This paper offers an in-depth review of advanced NTN management technologies in the context of 6G evolution, focusing on radio resource management, mobility management, and dynamic network slicing. Building on this foundation and considering the latest trends in NTN development, we then present some innovative perspectives to emerging challenges in satellite beamforming, handover mechanisms, and inter-satellite transmissions. Lastly, we identify open research issues and propose future directions aimed at advancing satellite Internet deployment and enhancing NTN performance.
Abstract:Coronavirus Disease 2019 (COVID-19), which emerged in 2019, has caused millions of deaths worldwide. Although effective vaccines have been developed to mitigate severe symptoms, certain populations, particularly the elderly and those with comorbidities, remain at high risk for severe outcomes and increased mortality. Consequently, early identification of the severity and clinical outcomes of the disease in these patients is vital to prevent adverse prognoses. Although traditional machine learning and deep learning models have been widely employed in this area, the potential of large language models (LLMs) remains largely unexplored. Our research focuses primarily on constructing specialized prompts and adopting multi-objective learning strategies. We started by selecting serological indicators that significantly correlate with clinical outcomes and disease severity to serve as input data for the model. Blood test samples often contain numerous missing values, and traditional models generally rely on imputation to handle these gaps in the data. In contrast, LLMs offer the advantage of robust semantic understanding. By setting prompts, we can explicitly inform the model when a feature's value is missing, without the need for imputation. For the multi-objective learning strategy, the model is designed to first predict disease severity and then predict clinical outcomes. Given that LLMs utilize both the input text and the generated tokens as input for generating the next token, the predicted severity is used as a basis for generating the clinical outcome. During the fine-tuning of the LLM, the two objectives influence and improve each other. Our experiments were implemented based on the ChatGLM model. The results demonstrate the effectiveness of LLMs in this task, suggesting promising potential for further development.
Abstract:There exists recent work in computer vision, named VAR, that proposes a new autoregressive paradigm for image generation. Diverging from the vanilla next-token prediction, VAR structurally reformulates the image generation into a coarse to fine next-scale prediction. In this paper, we show that this scale-wise autoregressive framework can be effectively decoupled into \textit{intra-scale modeling}, which captures local spatial dependencies within each scale, and \textit{inter-scale modeling}, which models cross-scale relationships progressively from coarse-to-fine scales. This decoupling structure allows to rebuild VAR in a more computationally efficient manner. Specifically, for intra-scale modeling -- crucial for generating high-fidelity images -- we retain the original bidirectional self-attention design to ensure comprehensive modeling; for inter-scale modeling, which semantically connects different scales but is computationally intensive, we apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead. We term this new framework M-VAR. Extensive experiments demonstrate that our method outperforms existing models in both image quality and generation speed. For example, our 1.5B model, with fewer parameters and faster inference speed, outperforms the largest VAR-d30-2B. Moreover, our largest model M-VAR-d32 impressively registers 1.78 FID on ImageNet 256$\times$256 and outperforms the prior-art autoregressive models LlamaGen/VAR by 0.4/0.19 and popular diffusion models LDM/DiT by 1.82/0.49, respectively. Code is avaiable at \url{https://github.com/OliverRensu/MVAR}.
Abstract:This paper presents an overview on intelligent reflecting surface (IRS)-enabled sensing and communication for the forthcoming sixth-generation (6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication (S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's (BS's) non-line-of-sight (NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication (ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
Abstract:Classical Chinese poetry and painting represent the epitome of artistic expression, but the abstract and symbolic nature of their relationship poses a significant challenge for computational translation. Most existing methods rely on large-scale paired datasets, which are scarce in this domain. In this work, we propose a semi-supervised approach using cycle-consistent adversarial networks to leverage the limited paired data and large unpaired corpus of poems and paintings. The key insight is to learn bidirectional mappings that enforce semantic alignment between the visual and textual modalities. We introduce novel evaluation metrics to assess the quality, diversity, and consistency of the generated poems and paintings. Extensive experiments are conducted on a new Chinese Painting Description Dataset (CPDD). The proposed model outperforms previous methods, showing promise in capturing the symbolic essence of artistic expression. Codes are available online \url{https://github.com/Mnster00/poemtopainting}.
Abstract:In this work, we present a comprehensive analysis of causal image modeling and introduce the Adventurer series models where we treat images as sequences of patch tokens and employ uni-directional language models to learn visual representations. This modeling paradigm allows us to process images in a recurrent formulation with linear complexity relative to the sequence length, which can effectively address the memory and computation explosion issues posed by high-resolution and fine-grained images. In detail, we introduce two simple designs that seamlessly integrate image inputs into the causal inference framework: a global pooling token placed at the beginning of the sequence and a flipping operation between every two layers. Extensive empirical studies demonstrate the significant efficiency and effectiveness of this causal image modeling paradigm. For example, our base-sized Adventurer model attains a competitive test accuracy of 84.0% on the standard ImageNet-1k benchmark with 216 images/s training throughput, which is 5.3 times more efficient than vision transformers to achieve the same result.
Abstract:Large language models (LLMs) enhanced with retrieval-augmented generation (RAG) have introduced a new paradigm for web search. However, the limited context awareness of LLMs degrades their performance on RAG tasks. Existing methods to enhance context awareness are often inefficient, incurring time or memory overhead during inference, and many are tailored to specific position embeddings. In this paper, we propose Position-Embedding-Agnostic attention Re-weighting (PEAR), which enhances the context awareness of LLMs with zero inference overhead. Specifically, on a proxy task focused on context copying, we first detect heads which suppress the models' context awareness thereby diminishing RAG performance. To weaken the impact of these heads, we re-weight their outputs with learnable coefficients. The LLM (with frozen parameters) is optimized by adjusting these coefficients to minimize loss on the proxy task. As a result, the coefficients are optimized to values less than one, thereby reducing their tendency to suppress RAG performance. During inference, the optimized coefficients are fixed to re-weight these heads, regardless of the specific task at hand. Our proposed PEAR offers two major advantages over previous approaches: (1) It introduces zero additional inference overhead in terms of memory usage or inference time, while outperforming competitive baselines in accuracy and efficiency across various RAG tasks. (2) It is independent of position embedding algorithms, ensuring broader applicability.
Abstract:We introduce jina-embeddings-v3, a novel text embedding model with 570 million parameters, achieves state-of-the-art performance on multilingual data and long-context retrieval tasks, supporting context lengths of up to 8192 tokens. The model includes a set of task-specific Low-Rank Adaptation (LoRA) adapters to generate high-quality embeddings for query-document retrieval, clustering, classification, and text matching. Additionally, Matryoshka Representation Learning is integrated into the training process, allowing flexible truncation of embedding dimensions without compromising performance. Evaluation on the MTEB benchmark shows that jina-embeddings-v3 outperforms the latest proprietary embeddings from OpenAI and Cohere on English tasks, while achieving superior performance compared to multilingual-e5-large-instruct across all multilingual tasks.