Abstract:Total-body PET/CT enables system-wide molecular imaging, but heterogeneous anatomical and metabolic signals, approximately 2 m axial coverage, and structured radiology semantics challenge existing medical AI models that assume single-modality inputs, localized fields of view, and coarse image-text alignment. We introduce SDF-HOLO (Systemic Dual-stream Fusion Holo Model), a multimodal foundation model for holistic total-body PET/CT, pre-trained on more than 10,000 patients. SDF-HOLO decouples CT and PET representation learning with dual-stream encoders and couples them through a cross-modal interaction module, allowing anatomical context to refine PET aggregation while metabolic saliency guides subtle morphological reasoning. To model long-range dependencies across the body, hierarchical context modeling combines efficient local windows with global attention. To bridge voxels and clinical language, we use anatomical segmentation masks as explicit semantic anchors and perform voxel-mask-text alignment during pre-training. Across tumor segmentation, low-dose lesion detection, and multilingual diagnostic report generation, SDF-HOLO outperforms strong task-specific and clinical-reference baselines while reducing localization errors and hallucinated findings. Beyond focal interpretation, the model enables system-wide metabolic profiling and reveals tumor-associated fingerprints of inter-organ metabolic network interactions, providing a scalable computational foundation for total-body PET/CT diagnostics and system-level precision oncology.
Abstract:Synthetic aperture radar (SAR) imagery exhibits intrinsic information sparsity due to its unique electromagnetic scattering mechanism. Despite the widespread adoption of deep neural network (DNN)-based SAR automatic target recognition (SAR-ATR) systems, they remain vulnerable to adversarial examples and tend to over-rely on background regions, leading to degraded adversarial robustness. Existing adversarial attacks for SAR-ATR often require visually perceptible distortions to achieve effective performance, thereby necessitating an attack method that balances effectiveness and stealthiness. In this paper, a novel attack method termed Space-Reweighted Adversarial Warping (SRAW) is proposed, which generates adversarial examples through optimized spatial deformation with reweighted budgets across foreground and background regions. Extensive experiments demonstrate that SRAW significantly degrades the performance of state-of-the-art SAR-ATR models and consistently outperforms existing methods in terms of imperceptibility and adversarial transferability. Code is made available at https://github.com/boremycin/SAR-ATR-TransAttack.
Abstract:The evolution of Remote Sensing Vision-Language Models(RS-VLMs) emphasizes the importance of transitioning from perception-centric recognition toward high-level deductive reasoning to enhance cognitive reliability in complex spatial tasks. However, current models often suffer from logical hallucinations, where correct answers are derived from flawed reasoning chains or rely on positional shortcuts rather than spatial logic. This decoupling undermines reliability in strategic spatial decision-making. To address this, we present GeoReason, a framework designed to synchronize internal thinking with final decisions. We first construct GeoReason-Bench, a logic-driven dataset containing 4,000 reasoning trajectories synthesized from geometric primitives and expert knowledge. We then formulate a two-stage training strategy: (1) Supervised Knowledge Initialization to equip the model with reasoning syntax and domain expertise, and (2) Consistency-Aware Reinforcement Learning to refine deductive reliability. This second stage integrates a novel Logical Consistency Reward, which penalizes logical drift via an option permutation strategy to anchor decisions in verifiable reasoning traces. Experimental results demonstrate that our framework significantly enhances the cognitive reliability and interpretability of RS-VLMs, achieving state-of-the-art performance compared to other advanced methods.
Abstract:Multimodal object detection leveraging RGB and Infrared (IR) images is pivotal for robust perception in all-weather scenarios. While recent adapter-based approaches efficiently transfer RGB-pretrained foundation models to this task, they often prioritize model efficiency at the expense of cross-modal structural consistency. Consequently, critical structural cues are frequently lost when significant domain gaps arise, such as in high-contrast or nighttime environments. Moreover, conventional static multimodal fusion mechanisms typically lack environmental awareness, resulting in suboptimal adaptation and constrained detection performance under complex, dynamic scene variations. To address these limitations, we propose SLGNet, a parameter-efficient framework that synergizes hierarchical structural priors and language-guided modulation within a frozen Vision Transformer (ViT)-based foundation model. Specifically, we design a Structure-Aware Adapter to extract hierarchical structural representations from both modalities and dynamically inject them into the ViT to compensate for structural degradation inherent in ViT-based backbones. Furthermore, we propose a Language-Guided Modulation module that exploits VLM-driven structured captions to dynamically recalibrate visual features, thereby endowing the model with robust environmental awareness. Extensive experiments on the LLVIP, FLIR, KAIST, and DroneVehicle datasets demonstrate that SLGNet establishes new state-of-the-art performance. Notably, on the LLVIP benchmark, our method achieves an mAP of 66.1, while reducing trainable parameters by approximately 87% compared to traditional full fine-tuning. This confirms SLGNet as a robust and efficient solution for multimodal perception.
Abstract:In this paper, we propose NeoVerse, a versatile 4D world model that is capable of 4D reconstruction, novel-trajectory video generation, and rich downstream applications. We first identify a common limitation of scalability in current 4D world modeling methods, caused either by expensive and specialized multi-view 4D data or by cumbersome training pre-processing. In contrast, our NeoVerse is built upon a core philosophy that makes the full pipeline scalable to diverse in-the-wild monocular videos. Specifically, NeoVerse features pose-free feed-forward 4D reconstruction, online monocular degradation pattern simulation, and other well-aligned techniques. These designs empower NeoVerse with versatility and generalization to various domains. Meanwhile, NeoVerse achieves state-of-the-art performance in standard reconstruction and generation benchmarks. Our project page is available at https://neoverse-4d.github.io
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.




Abstract:Spatio-temporal graphs are powerful tools for modeling complex dependencies in traffic time series. However, the distributed nature of real-world traffic data across multiple stakeholders poses significant challenges in modeling and reconstructing inter-client spatial dependencies while adhering to data locality constraints. Existing methods primarily address static dependencies, overlooking their dynamic nature and resulting in suboptimal performance. In response, we propose Federated Spatio-Temporal Graph with Dynamic Inter-Client Dependencies (FedSTGD), a framework designed to model and reconstruct dynamic inter-client spatial dependencies in federated learning. FedSTGD incorporates a federated nonlinear computation decomposition module to approximate complex graph operations. This is complemented by a graph node embedding augmentation module, which alleviates performance degradation arising from the decomposition. These modules are coordinated through a client-server collective learning protocol, which decomposes dynamic inter-client spatial dependency learning tasks into lightweight, parallelizable subtasks. Extensive experiments on four real-world datasets demonstrate that FedSTGD achieves superior performance over state-of-the-art baselines in terms of RMSE, MAE, and MAPE, approaching that of centralized baselines. Ablation studies confirm the contribution of each module in addressing dynamic inter-client spatial dependencies, while sensitivity analysis highlights the robustness of FedSTGD to variations in hyperparameters.
Abstract:We introduce Kimi Linear, a hybrid linear attention architecture that, for the first time, outperforms full attention under fair comparisons across various scenarios -- including short-context, long-context, and reinforcement learning (RL) scaling regimes. At its core lies Kimi Delta Attention (KDA), an expressive linear attention module that extends Gated DeltaNet with a finer-grained gating mechanism, enabling more effective use of limited finite-state RNN memory. Our bespoke chunkwise algorithm achieves high hardware efficiency through a specialized variant of the Diagonal-Plus-Low-Rank (DPLR) transition matrices, which substantially reduces computation compared to the general DPLR formulation while remaining more consistent with the classical delta rule. We pretrain a Kimi Linear model with 3B activated parameters and 48B total parameters, based on a layerwise hybrid of KDA and Multi-Head Latent Attention (MLA). Our experiments show that with an identical training recipe, Kimi Linear outperforms full MLA with a sizeable margin across all evaluated tasks, while reducing KV cache usage by up to 75% and achieving up to 6 times decoding throughput for a 1M context. These results demonstrate that Kimi Linear can be a drop-in replacement for full attention architectures with superior performance and efficiency, including tasks with longer input and output lengths. To support further research, we open-source the KDA kernel and vLLM implementations, and release the pre-trained and instruction-tuned model checkpoints.




Abstract:We introduce Wan-Animate, a unified framework for character animation and replacement. Given a character image and a reference video, Wan-Animate can animate the character by precisely replicating the expressions and movements of the character in the video to generate high-fidelity character videos. Alternatively, it can integrate the animated character into the reference video to replace the original character, replicating the scene's lighting and color tone to achieve seamless environmental integration. Wan-Animate is built upon the Wan model. To adapt it for character animation tasks, we employ a modified input paradigm to differentiate between reference conditions and regions for generation. This design unifies multiple tasks into a common symbolic representation. We use spatially-aligned skeleton signals to replicate body motion and implicit facial features extracted from source images to reenact expressions, enabling the generation of character videos with high controllability and expressiveness. Furthermore, to enhance environmental integration during character replacement, we develop an auxiliary Relighting LoRA. This module preserves the character's appearance consistency while applying the appropriate environmental lighting and color tone. Experimental results demonstrate that Wan-Animate achieves state-of-the-art performance. We are committed to open-sourcing the model weights and its source code.
Abstract:Computed Tomography (CT)/X-ray registration in image-guided navigation remains challenging because of its stringent requirements for high accuracy and real-time performance. Traditional "render and compare" methods, relying on iterative projection and comparison, suffer from spatial information loss and domain gap. 3D reconstruction from biplanar X-rays supplements spatial and shape information for 2D/3D registration, but current methods are limited by dense-view requirements and struggles with noisy X-rays. To address these limitations, we introduce RadGS-Reg, a novel framework for vertebral-level CT/X-ray registration through joint 3D Radiative Gaussians (RadGS) reconstruction and 3D/3D registration. Specifically, our biplanar X-rays vertebral RadGS reconstruction module explores learning-based RadGS reconstruction method with a Counterfactual Attention Learning (CAL) mechanism, focusing on vertebral regions in noisy X-rays. Additionally, a patient-specific pre-training strategy progressively adapts the RadGS-Reg from simulated to real data while simultaneously learning vertebral shape prior knowledge. Experiments on in-house datasets demonstrate the state-of-the-art performance for both tasks, surpassing existing methods. The code is available at: https://github.com/shenao1995/RadGS_Reg.