Central South University
Abstract:Physical and optical factors interacting with sensor characteristics create complex image degradation patterns. Despite advances in deep learning-based super-resolution, existing methods overlook the causal nature of degradation by adopting simplistic black-box mappings. This paper formulates super-resolution using structural causal models to reason about image degradation processes. We establish a mathematical foundation that unifies principles from causal inference, deriving necessary conditions for identifying latent degradation mechanisms and corresponding propagation. We propose a novel counterfactual learning strategy that leverages semantic guidance to reason about hypothetical degradation scenarios, leading to theoretically-grounded representations that capture invariant features across different degradation conditions. The framework incorporates an adaptive intervention mechanism with provable bounds on treatment effects, allowing precise manipulation of degradation factors while maintaining semantic consistency. Through extensive empirical validation, we demonstrate that our approach achieves significant improvements over state-of-the-art methods, particularly in challenging scenarios with compound degradations. On standard benchmarks, our method consistently outperforms existing approaches by significant margins (0.86-1.21dB PSNR), while providing interpretable insights into the restoration process. The theoretical framework and empirical results demonstrate the fundamental importance of causal reasoning in understanding image restoration systems.
Abstract:Mean texture depth (MTD) is pivotal in assessing the skid resistance of asphalt pavements and ensuring road safety. This study focuses on developing an automated system for extracting texture features and evaluating MTD based on pavement images. The contributions of this work are threefold: firstly, it proposes an economical method to acquire three-dimensional (3D) pavement texture data; secondly, it enhances 3D image processing techniques and formulates features that represent various aspects of texture; thirdly, it establishes multivariate prediction models that link these features with MTD values. Validation results demonstrate that the Gradient Boosting Tree (GBT) model achieves remarkable prediction stability and accuracy (R2 = 0.9858), and field tests indicate the superiority of the proposed method over other techniques, with relative errors below 10%. This method offers a comprehensive end-to-end solution for pavement quality evaluation, from images input to MTD predictions output.