Abstract:Reflections often degrade the visual quality of images captured through transparent surfaces, and reflection removal methods suffers from the shortage of paired real-world samples.This paper proposes a hybrid approach that combines cycle-consistency with denoising diffusion probabilistic models (DDPM) to effectively remove reflections from single images without requiring paired training data. The method introduces a Reflective Removal Network (RRN) that leverages DDPMs to model the decomposition process and recover the transmission image, and a Reflective Synthesis Network (RSN) that re-synthesizes the input image using the separated components through a nonlinear attention-based mechanism. Experimental results demonstrate the effectiveness of the proposed method on the SIR$^2$, Flash-Based Reflection Removal (FRR) Dataset, and a newly introduced Museum Reflection Removal (MRR) dataset, showing superior performance compared to state-of-the-art methods.
Abstract:Classical Chinese poetry and painting represent the epitome of artistic expression, but the abstract and symbolic nature of their relationship poses a significant challenge for computational translation. Most existing methods rely on large-scale paired datasets, which are scarce in this domain. In this work, we propose a semi-supervised approach using cycle-consistent adversarial networks to leverage the limited paired data and large unpaired corpus of poems and paintings. The key insight is to learn bidirectional mappings that enforce semantic alignment between the visual and textual modalities. We introduce novel evaluation metrics to assess the quality, diversity, and consistency of the generated poems and paintings. Extensive experiments are conducted on a new Chinese Painting Description Dataset (CPDD). The proposed model outperforms previous methods, showing promise in capturing the symbolic essence of artistic expression. Codes are available online \url{https://github.com/Mnster00/poemtopainting}.
Abstract:Monocular depth estimation from a single image is an ill-posed problem for computer vision due to insufficient reliable cues as the prior knowledge. Besides the inter-frame supervision, namely stereo and adjacent frames, extensive prior information is available in the same frame. Reflections from specular surfaces, informative intra-frame priors, enable us to reformulate the ill-posed depth estimation task as a multi-view synthesis. This paper proposes the first self-supervision for deep-learning depth estimation on water scenes via intra-frame priors, known as reflection supervision and geometrical constraints. In the first stage, a water segmentation network is performed to separate the reflection components from the entire image. Next, we construct a self-supervised framework to predict the target appearance from reflections, perceived as other perspectives. The photometric re-projection error, incorporating SmoothL1 and a novel photometric adaptive SSIM, is formulated to optimize pose and depth estimation by aligning the transformed virtual depths and source ones. As a supplement, the water surface is determined from real and virtual camera positions, which complement the depth of the water area. Furthermore, to alleviate these laborious ground truth annotations, we introduce a large-scale water reflection scene (WRS) dataset rendered from Unreal Engine 4. Extensive experiments on the WRS dataset prove the feasibility of the proposed method compared to state-of-the-art depth estimation techniques.
Abstract:Modern SMT solvers, such as Z3, offer user-controllable strategies, enabling users to tailor them for their unique set of instances, thus dramatically enhancing solver performance for their use case. However, this approach of strategy customization presents a significant challenge: handcrafting an optimized strategy for a class of SMT instances remains a complex and demanding task for both solver developers and users alike. In this paper, we address this problem of automatic SMT strategy synthesis via a novel Monte Carlo Tree Search (MCTS) based method. Our method treats strategy synthesis as a sequential decision-making process, whose search tree corresponds to the strategy space, and employs MCTS to navigate this vast search space. The key innovations that enable our method to identify effective strategies, while keeping costs low, are the ideas of layered and staged MCTS search. These novel approaches allow for a deeper and more efficient exploration of the strategy space, enabling us to synthesize more effective strategies than the default ones in state-of-the-art (SOTA) SMT solvers. We implement our method, dubbed Z3alpha, as part of the Z3 SMT solver. Through extensive evaluations across 6 important SMT logics, Z3alpha demonstrates superior performance compared to the SOTA synthesis tool FastSMT, the default Z3 solver, and the CVC5 solver on most benchmarks. Remarkably, on a challenging QF_BV benchmark set, Z3alpha solves 42.7% more instances than the default strategy in the Z3 SMT solver.
Abstract:This paper introduces AlphaMapleSAT, a novel Monte Carlo Tree Search (MCTS) based Cube-and-Conquer (CnC) SAT solving method aimed at efficiently solving challenging combinatorial problems. Despite the tremendous success of CnC solvers in solving a variety of hard combinatorial problems, the lookahead cubing techniques at the heart of CnC have not evolved much for many years. Part of the reason is the sheer difficulty of coming up with new cubing techniques that are both low-cost and effective in partitioning input formulas into sub-formulas, such that the overall runtime is minimized. Lookahead cubing techniques used by current state-of-the-art CnC solvers, such as March, keep their cubing costs low by constraining the search for the optimal splitting variables. By contrast, our key innovation is a deductively-driven MCTS-based lookahead cubing technique, that performs a deeper heuristic search to find effective cubes, while keeping the cubing cost low. We perform an extensive comparison of AlphaMapleSAT against the March CnC solver on challenging combinatorial problems such as the minimum Kochen-Specker and Ramsey problems. We also perform ablation studies to verify the efficacy of the MCTS heuristic search for the cubing problem. Results show up to 2.3x speedup in parallel (and up to 27x in sequential) elapsed real time.
Abstract:Super-resolution techniques are crucial in improving image granularity, particularly in complex urban scenes, where preserving geometric structures is vital for data-informed cultural heritage applications. In this paper, we propose a city scene super-resolution method via geometric error minimization. The geometric-consistent mechanism leverages the Hough Transform to extract regular geometric features in city scenes, enabling the computation of geometric errors between low-resolution and high-resolution images. By minimizing mixed mean square error and geometric align error during the super-resolution process, the proposed method efficiently restores details and geometric regularities. Extensive validations on the SET14, BSD300, Cityscapes and GSV-Cities datasets demonstrate that the proposed method outperforms existing state-of-the-art methods, especially in urban scenes.
Abstract:Deep-learning-based approaches to depth estimation are rapidly advancing, offering superior performance over existing methods. To estimate the depth in real-world scenarios, depth estimation models require the robustness of various noise environments. In this work, a Pyramid Frequency Network(PFN) with Spatial Attention Residual Refinement Module(SARRM) is proposed to deal with the weak robustness of existing deep-learning methods. To reconstruct depth maps with accurate details, the SARRM constructs a residual fusion method with an attention mechanism to refine the blur depth. The frequency division strategy is designed, and the frequency pyramid network is developed to extract features from multiple frequency bands. With the frequency strategy, PFN achieves better visual accuracy than state-of-the-art methods in both indoor and outdoor scenes on Make3D, KITTI depth, and NYUv2 datasets. Additional experiments on the noisy NYUv2 dataset demonstrate that PFN is more reliable than existing deep-learning methods in high-noise scenes.
Abstract:Single image super-resolution (SISR) in unconstrained environments is challenging because of various illuminations, occlusion and complex environments. Recent researches have achieved great progress on super-resolution due to the development of deep learning in the field of computer vision. In this letter, a Dense U-net with shuffle pooling method is proposed. First, a modified U-net with dense blocks, called dense U-net, is proposed for SISR. Second, a novel pooling strategy called shuffle pooling is designed, which is applied to the dense U-Net for super-resolution task. Third, a mix loss function, which combined with Mean Square Error(MSE), Structural Similarity Index (SSIM) and Mean Gradient Error (MGE), is proposed to solve the perception loss and high-frequency information loss. The proposed method achieves superior accuracy over previous state-of-the-arts on the three benchmark datasets: SET14, BSD300, ICDAR2003. Code is available online.
Abstract:Single image super-resolution (SISR) is the task of inferring a high-resolution image from a single low-resolution image. Recent research on super-resolution has achieved great progress due to the development of deep convolutional neural networks in the field of computer vision. Existing super-resolution reconstruction methods have high performances in the criterion of Mean Square Error (MSE) but most methods fail to reconstruct an image with shape edges. To solve this problem, the mixed gradient error, which is composed by MSE and a weighted mean gradient error, is proposed in this work and applied to a modified U-net network as the loss function. The modified U-net removes all batch normalization layers and one of the convolution layers in each block. The operation reduces the number of parameters, and therefore accelerates the reconstruction. Compared with the existing image super-resolution algorithms, the proposed reconstruction method has better performance and time consumption. The experiments demonstrate that modified U-net network architecture with mixed gradient loss yields high-level results on three image datasets: SET14, BSD300, ICDAR2003. Code is available online.