Abstract:Reflections often degrade the visual quality of images captured through transparent surfaces, and reflection removal methods suffers from the shortage of paired real-world samples.This paper proposes a hybrid approach that combines cycle-consistency with denoising diffusion probabilistic models (DDPM) to effectively remove reflections from single images without requiring paired training data. The method introduces a Reflective Removal Network (RRN) that leverages DDPMs to model the decomposition process and recover the transmission image, and a Reflective Synthesis Network (RSN) that re-synthesizes the input image using the separated components through a nonlinear attention-based mechanism. Experimental results demonstrate the effectiveness of the proposed method on the SIR$^2$, Flash-Based Reflection Removal (FRR) Dataset, and a newly introduced Museum Reflection Removal (MRR) dataset, showing superior performance compared to state-of-the-art methods.
Abstract:Classical Chinese poetry and painting represent the epitome of artistic expression, but the abstract and symbolic nature of their relationship poses a significant challenge for computational translation. Most existing methods rely on large-scale paired datasets, which are scarce in this domain. In this work, we propose a semi-supervised approach using cycle-consistent adversarial networks to leverage the limited paired data and large unpaired corpus of poems and paintings. The key insight is to learn bidirectional mappings that enforce semantic alignment between the visual and textual modalities. We introduce novel evaluation metrics to assess the quality, diversity, and consistency of the generated poems and paintings. Extensive experiments are conducted on a new Chinese Painting Description Dataset (CPDD). The proposed model outperforms previous methods, showing promise in capturing the symbolic essence of artistic expression. Codes are available online \url{https://github.com/Mnster00/poemtopainting}.