Abstract:Anomaly detection in multivariate time series is challenging as heterogeneous subsequence anomalies may occur. Reconstruction-based methods, which focus on learning nomral patterns in the frequency domain to detect diverse abnormal subsequences, achieve promising resutls, while still falling short on capturing fine-grained frequency characteristics and channel correlations. To contend with the limitations, we introduce CATCH, a framework based on frequency patching. We propose to patchify the frequency domain into frequency bands, which enhances its ability to capture fine-grained frequency characteristics. To perceive appropriate channel correlations, we propose a Channel Fusion Module (CFM), which features a patch-wise mask generator and a masked-attention mechanism. Driven by a bi-level multi-objective optimization algorithm, the CFM is encouraged to iteratively discover appropriate patch-wise channel correlations, and to cluster relevant channels while isolating adverse effects from irrelevant channels. Extensive experiments on 9 real-world datasets and 12 synthetic datasets demonstrate that CATCH achieves state-of-the-art performance.
Abstract:AI-generated text detection plays an increasingly important role in various fields. In this study, we developed an efficient AI-generated text detection model based on the BERT algorithm, which provides new ideas and methods for solving related problems. In the data preprocessing stage, a series of steps were taken to process the text, including operations such as converting to lowercase, word splitting, removing stop words, stemming extraction, removing digits, and eliminating redundant spaces, to ensure data quality and accuracy. By dividing the dataset into a training set and a test set in the ratio of 60% and 40%, and observing the changes in the accuracy and loss values during the training process, we found that the model performed well during the training process. The accuracy increases steadily from the initial 94.78% to 99.72%, while the loss value decreases from 0.261 to 0.021 and converges gradually, which indicates that the BERT model is able to detect AI-generated text with high accuracy and the prediction results are gradually approaching the real classification results. Further analysis of the results of the training and test sets reveals that in terms of loss value, the average loss of the training set is 0.0565, while the average loss of the test set is 0.0917, showing a slightly higher loss value. As for the accuracy, the average accuracy of the training set reaches 98.1%, while the average accuracy of the test set is 97.71%, which is not much different from each other, indicating that the model has good generalisation ability. In conclusion, the AI-generated text detection model based on the BERT algorithm proposed in this study shows high accuracy and stability in experiments, providing an effective solution for related fields.
Abstract:This paper introduces AlphaMapleSAT, a novel Monte Carlo Tree Search (MCTS) based Cube-and-Conquer (CnC) SAT solving method aimed at efficiently solving challenging combinatorial problems. Despite the tremendous success of CnC solvers in solving a variety of hard combinatorial problems, the lookahead cubing techniques at the heart of CnC have not evolved much for many years. Part of the reason is the sheer difficulty of coming up with new cubing techniques that are both low-cost and effective in partitioning input formulas into sub-formulas, such that the overall runtime is minimized. Lookahead cubing techniques used by current state-of-the-art CnC solvers, such as March, keep their cubing costs low by constraining the search for the optimal splitting variables. By contrast, our key innovation is a deductively-driven MCTS-based lookahead cubing technique, that performs a deeper heuristic search to find effective cubes, while keeping the cubing cost low. We perform an extensive comparison of AlphaMapleSAT against the March CnC solver on challenging combinatorial problems such as the minimum Kochen-Specker and Ramsey problems. We also perform ablation studies to verify the efficacy of the MCTS heuristic search for the cubing problem. Results show up to 2.3x speedup in parallel (and up to 27x in sequential) elapsed real time.
Abstract:The prediction of molecular properties is one of the most important and challenging tasks in the field of artificial intelligence-based drug design. Among the current mainstream methods, the most commonly used feature representation for training DNN models is based on SMILES and molecular graphs, although these methods are concise and effective, they also limit the ability to capture spatial information. In this work, we propose Curvature-based Transformer to improve the ability of Graph Transformer neural network models to extract structural information on molecular graph data by introducing Discretization of Ricci Curvature. To embed the curvature in the model, we add the curvature information of the graph as positional Encoding to the node features during the attention-score calculation. This method can introduce curvature information from graph data without changing the original network architecture, and it has the potential to be extended to other models. We performed experiments on chemical molecular datasets including PCQM4M-LST, MoleculeNet and compared with models such as Uni-Mol, Graphormer, and the results show that this method can achieve the state-of-the-art results. It is proved that the discretized Ricci curvature also reflects the structural and functional relationship while describing the local geometry of the graph molecular data.
Abstract:Self-attention modules have demonstrated remarkable capabilities in capturing long-range relationships and improving the performance of point cloud tasks. However, point cloud objects are typically characterized by complex, disordered, and non-Euclidean spatial structures with multiple scales, and their behavior is often dynamic and unpredictable. The current self-attention modules mostly rely on dot product multiplication and dimension alignment among query-key-value features, which cannot adequately capture the multi-scale non-Euclidean structures of point cloud objects. To address these problems, this paper proposes a self-attention plug-in module with its variants, Multi-scale Geometry-aware Transformer (MGT). MGT processes point cloud data with multi-scale local and global geometric information in the following three aspects. At first, the MGT divides point cloud data into patches with multiple scales. Secondly, a local feature extractor based on sphere mapping is proposed to explore the geometry inner each patch and generate a fixed-length representation for each patch. Thirdly, the fixed-length representations are fed into a novel geodesic-based self-attention to capture the global non-Euclidean geometry between patches. Finally, all the modules are integrated into the framework of MGT with an end-to-end training scheme. Experimental results demonstrate that the MGT vastly increases the capability of capturing multi-scale geometry using the self-attention mechanism and achieves strong competitive performance on mainstream point cloud benchmarks.
Abstract:Autonomous driving has now made great strides thanks to artificial intelligence, and numerous advanced methods have been proposed for vehicle end target detection, including single sensor or multi sensor detection methods. However, the complexity and diversity of real traffic situations necessitate an examination of how to use these methods in real road conditions. In this paper, we propose RMMDet, a road-side multitype and multigroup sensor detection system for autonomous driving. We use a ROS-based virtual environment to simulate real-world conditions, in particular the physical and functional construction of the sensors. Then we implement muti-type sensor detection and multi-group sensors fusion in this environment, including camera-radar and camera-lidar detection based on result-level fusion. We produce local datasets and real sand table field, and conduct various experiments. Furthermore, we link a multi-agent collaborative scheduling system to the fusion detection system. Hence, the whole roadside detection system is formed by roadside perception, fusion detection, and scheduling planning. Through the experiments, it can be seen that RMMDet system we built plays an important role in vehicle-road collaboration and its optimization. The code and supplementary materials can be found at: https://github.com/OrangeSodahub/RMMDet
Abstract:Although Deep Learning (DL) has achieved success in complex Artificial Intelligence (AI) tasks, it suffers from various notorious problems (e.g., feature redundancy, and vanishing or exploding gradients), since updating parameters in Euclidean space cannot fully exploit the geometric structure of the solution space. As a promising alternative solution, Riemannian-based DL uses geometric optimization to update parameters on Riemannian manifolds and can leverage the underlying geometric information. Accordingly, this article presents a comprehensive survey of applying geometric optimization in DL. At first, this article introduces the basic procedure of the geometric optimization, including various geometric optimizers and some concepts of Riemannian manifold. Subsequently, this article investigates the application of geometric optimization in different DL networks in various AI tasks, e.g., convolution neural network, recurrent neural network, transfer learning, and optimal transport. Additionally, typical public toolboxes that implement optimization on manifold are also discussed. Finally, this article makes a performance comparison between different deep geometric optimization methods under image recognition scenarios.