State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China, Key Laboratory of Photonic Control Technology
Abstract:We propose the first comprehensive approach for modeling and analyzing the spatiotemporal shape variability in tree-like 4D objects, i.e., 3D objects whose shapes bend, stretch, and change in their branching structure over time as they deform, grow, and interact with their environment. Our key contribution is the representation of tree-like 3D shapes using Square Root Velocity Function Trees (SRVFT). By solving the spatial registration in the SRVFT space, which is equipped with an L2 metric, 4D tree-shaped structures become time-parameterized trajectories in this space. This reduces the problem of modeling and analyzing 4D tree-like shapes to that of modeling and analyzing elastic trajectories in the SRVFT space, where elasticity refers to time warping. In this paper, we propose a novel mathematical representation of the shape space of such trajectories, a Riemannian metric on that space, and computational tools for fast and accurate spatiotemporal registration and geodesics computation between 4D tree-shaped structures. Leveraging these building blocks, we develop a full framework for modelling the spatiotemporal variability using statistical models and generating novel 4D tree-like structures from a set of exemplars. We demonstrate and validate the proposed framework using real 4D plant data.
Abstract:This paper addresses the challenges of efficiently fine-tuning large language models (LLMs) by exploring data efficiency and hyperparameter optimization. We investigate the minimum data required for effective fine-tuning and propose a novel hyperparameter optimization method that leverages early-stage model performance. Our experiments demonstrate that fine-tuning with as few as 200 samples can improve model accuracy from 70\% to 88\% in a product attribute extraction task. We identify a saturation point of approximately 6,500 samples, beyond which additional data yields diminishing returns. Our proposed bayesian hyperparameter optimization method, which evaluates models at 20\% of total training time, correlates strongly with final model performance, with 4 out of 5 top early-stage models remaining in the top 5 at completion. This approach led to a 2\% improvement in accuracy over baseline models when evaluated on an independent test set. These findings offer actionable insights for practitioners, potentially reducing computational load and dependency on extensive datasets while enhancing overall performance of fine-tuned LLMs.
Abstract:Dynamic Scene Graph Generation (DSGG) focuses on identifying visual relationships within the spatial-temporal domain of videos. Conventional approaches often employ multi-stage pipelines, which typically consist of object detection, temporal association, and multi-relation classification. However, these methods exhibit inherent limitations due to the separation of multiple stages, and independent optimization of these sub-problems may yield sub-optimal solutions. To remedy these limitations, we propose a one-stage end-to-end framework, termed OED, which streamlines the DSGG pipeline. This framework reformulates the task as a set prediction problem and leverages pair-wise features to represent each subject-object pair within the scene graph. Moreover, another challenge of DSGG is capturing temporal dependencies, we introduce a Progressively Refined Module (PRM) for aggregating temporal context without the constraints of additional trackers or handcrafted trajectories, enabling end-to-end optimization of the network. Extensive experiments conducted on the Action Genome benchmark demonstrate the effectiveness of our design. The code and models are available at \url{https://github.com/guanw-pku/OED}.
Abstract:Despite the significant success achieved by deep learning methods in medical image segmentation, researchers still struggle in the computer-aided diagnosis of abdominal lymph nodes due to the complex abdominal environment, small and indistinguishable lesions, and limited annotated data. To address these problems, we present a pipeline that integrates the conditional diffusion model for lymph node generation and the nnU-Net model for lymph node segmentation to improve the segmentation performance of abdominal lymph nodes through synthesizing a diversity of realistic abdominal lymph node data. We propose LN-DDPM, a conditional denoising diffusion probabilistic model (DDPM) for lymph node (LN) generation. LN-DDPM utilizes lymph node masks and anatomical structure masks as model conditions. These conditions work in two conditioning mechanisms: global structure conditioning and local detail conditioning, to distinguish between lymph nodes and their surroundings and better capture lymph node characteristics. The obtained paired abdominal lymph node images and masks are used for the downstream segmentation task. Experimental results on the abdominal lymph node datasets demonstrate that LN-DDPM outperforms other generative methods in the abdominal lymph node image synthesis and better assists the downstream abdominal lymph node segmentation task.
Abstract:In this paper, we delve into the rapidly evolving challenge of misinformation detection, with a specific focus on the nuanced manipulation of narrative frames - an under-explored area within the AI community. The potential for Generative AI models to generate misleading narratives underscores the urgency of this problem. Drawing from communication and framing theories, we posit that the presentation or 'framing' of accurate information can dramatically alter its interpretation, potentially leading to misinformation. We highlight this issue through real-world examples, demonstrating how shifts in narrative frames can transmute fact-based information into misinformation. To tackle this challenge, we propose an innovative approach leveraging the power of pre-trained Large Language Models and deep neural networks to detect misinformation originating from accurate facts portrayed under different frames. These advanced AI techniques offer unprecedented capabilities in identifying complex patterns within unstructured data critical for examining the subtleties of narrative frames. The objective of this paper is to bridge a significant research gap in the AI domain, providing valuable insights and methodologies for tackling framing-induced misinformation, thus contributing to the advancement of responsible and trustworthy AI technologies. Several experiments are intensively conducted and experimental results explicitly demonstrate the various impact of elements of framing theory proving the rationale of applying framing theory to increase the performance in misinformation detection.
Abstract:Multi-Stage Classifier (MSC) - several classifiers working sequentially in an arranged order and classification decision is partially made at each step - is widely used in industrial applications for various resource limitation reasons. The classifiers of a multi-stage process are usually Neural Network (NN) models trained independently or in their inference order without considering the signals from the latter stages. Aimed at two-stage binary classification process, the most common type of MSC, we propose a novel training framework, named Feedback Training. The classifiers are trained in an order reverse to their actual working order, and the classifier at the later stage is used to guide the training of initial-stage classifier via a sample weighting method. We experimentally show the efficacy of our proposed approach, and its great superiority under the scenario of few-shot training.
Abstract:Nowadays, open-source large language models like LLaMA have emerged. Recent developments have incorporated supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT) to align these models with human goals. However, SFT methods treat all training data with mixed quality equally, while RLFT methods require high-quality pairwise or ranking-based preference data. In this study, we present a novel framework, named OpenChat, to advance open-source language models with mixed-quality data. Specifically, we consider the general SFT training data, consisting of a small amount of expert data mixed with a large proportion of sub-optimal data, without any preference labels. We propose the C(onditioned)-RLFT, which regards different data sources as coarse-grained reward labels and learns a class-conditioned policy to leverage complementary data quality information. Interestingly, the optimal policy in C-RLFT can be easily solved through single-stage, RL-free supervised learning, which is lightweight and avoids costly human preference labeling. Through extensive experiments on three standard benchmarks, our openchat-13b fine-tuned with C-RLFT achieves the highest average performance among all 13b open-source language models. Moreover, we use AGIEval to validate the model generalization performance, in which only openchat-13b surpasses the base model. Finally, we conduct a series of analyses to shed light on the effectiveness and robustness of OpenChat. Our code, data, and models are publicly available at https://github.com/imoneoi/openchat.
Abstract:Recurrent spiking neural networks (RSNNs) hold great potential for advancing artificial general intelligence, as they draw inspiration from the biological nervous system and show promise in modeling complex dynamics. However, the widely-used surrogate gradient-based training methods for RSNNs are inherently inaccurate and unfriendly to neuromorphic hardware. To address these limitations, we propose the evolving connectivity (EC) framework, an inference-only method for training RSNNs. The EC framework reformulates weight-tuning as a search into parameterized connection probability distributions, and employs Natural Evolution Strategies (NES) for optimizing these distributions. Our EC framework circumvents the need for gradients and features hardware-friendly characteristics, including sparse boolean connections and high scalability. We evaluate EC on a series of standard robotic locomotion tasks, where it achieves comparable performance with deep neural networks and outperforms gradient-trained RSNNs, even solving the complex 17-DoF humanoid task. Additionally, the EC framework demonstrates a two to three fold speedup in efficiency compared to directly evolving parameters. By providing a performant and hardware-friendly alternative, the EC framework lays the groundwork for further energy-efficient applications of RSNNs and advances the development of neuromorphic devices.
Abstract:The rapid growth of information on the Internet has led to an overwhelming amount of opinions and comments on various activities, products, and services. This makes it difficult and time-consuming for users to process all the available information when making decisions. Text summarization, a Natural Language Processing (NLP) task, has been widely explored to help users quickly retrieve relevant information by generating short and salient content from long or multiple documents. Recent advances in pre-trained language models, such as ChatGPT, have demonstrated the potential of Large Language Models (LLMs) in text generation. However, LLMs require massive amounts of data and resources and are challenging to implement as offline applications. Furthermore, existing text summarization approaches often lack the ``adaptive" nature required to capture diverse aspects in opinion summarization, which is particularly detrimental to users with specific requirements or preferences. In this paper, we propose an Aspect-adaptive Knowledge-based Opinion Summarization model for product reviews, which effectively captures the adaptive nature required for opinion summarization. The model generates aspect-oriented summaries given a set of reviews for a particular product, efficiently providing users with useful information on specific aspects they are interested in, ensuring the generated summaries are more personalized and informative. Extensive experiments have been conducted using real-world datasets to evaluate the proposed model. The results demonstrate that our model outperforms state-of-the-art approaches and is adaptive and efficient in generating summaries that focus on particular aspects, enabling users to make well-informed decisions and catering to their diverse interests and preferences.
Abstract:The pose-only (PO) visual representation has been proven to be equivalent to the classical multiple-view geometry, while significantly improving computational efficiency. However, its applicability for real-world navigation in large-scale complex environments has not yet been demonstrated. In this study, we present an efficient pose-only LiDAR-enhanced visual-inertial navigation system (PO-VINS) to enhance the real-time performance of the state estimator. In the visual-inertial state estimator (VISE), we propose a pose-only visual-reprojection measurement model that only contains the inertial measurement unit (IMU) pose and extrinsic-parameter states. We further integrated the LiDAR-enhanced method to construct a pose-only LiDAR-depth measurement model. Real-world experiments were conducted in large-scale complex environments, demonstrating that the proposed PO-VISE and LiDAR-enhanced PO-VISE reduce computational complexity by more than 50% and over 20%, respectively. Additionally, the PO-VINS yields the same accuracy as conventional methods. These results indicate that the pose-only solution is efficient and applicable for real-time visual-inertial state estimation.