Abstract:This paper introduces a novel framework for unified incremental few-shot object detection (iFSOD) and instance segmentation (iFSIS) using the Transformer architecture. Our goal is to create an optimal solution for situations where only a few examples of novel object classes are available, with no access to training data for base or old classes, while maintaining high performance across both base and novel classes. To achieve this, We extend Mask-DINO into a two-stage incremental learning framework. Stage 1 focuses on optimizing the model using the base dataset, while Stage 2 involves fine-tuning the model on novel classes. Besides, we incorporate a classifier selection strategy that assigns appropriate classifiers to the encoder and decoder according to their distinct functions. Empirical evidence indicates that this approach effectively mitigates the over-fitting on novel classes learning. Furthermore, we implement knowledge distillation to prevent catastrophic forgetting of base classes. Comprehensive evaluations on the COCO and LVIS datasets for both iFSIS and iFSOD tasks demonstrate that our method significantly outperforms state-of-the-art approaches.
Abstract:We introduce Referring Human Pose and Mask Estimation (R-HPM) in the wild, where either a text or positional prompt specifies the person of interest in an image. This new task holds significant potential for human-centric applications such as assistive robotics and sports analysis. In contrast to previous works, R-HPM (i) ensures high-quality, identity-aware results corresponding to the referred person, and (ii) simultaneously predicts human pose and mask for a comprehensive representation. To achieve this, we introduce a large-scale dataset named RefHuman, which substantially extends the MS COCO dataset with additional text and positional prompt annotations. RefHuman includes over 50,000 annotated instances in the wild, each equipped with keypoint, mask, and prompt annotations. To enable prompt-conditioned estimation, we propose the first end-to-end promptable approach named UniPHD for R-HPM. UniPHD extracts multimodal representations and employs a proposed pose-centric hierarchical decoder to process (text or positional) instance queries and keypoint queries, producing results specific to the referred person. Extensive experiments demonstrate that UniPHD produces quality results based on user-friendly prompts and achieves top-tier performance on RefHuman val and MS COCO val2017. Data and Code: https://github.com/bo-miao/RefHuman
Abstract:Automatic annotation of large-scale datasets can introduce noisy training data labels, which adversely affect the learning process of deep neural networks (DNNs). Consequently, Noisy Labels Learning (NLL) has become a critical research field for Convolutional Neural Networks (CNNs), though it remains less explored for Vision Transformers (ViTs). In this study, we evaluate the vulnerability of ViT fine-tuning to noisy labels and compare its robustness with CNNs. We also investigate whether NLL methods developed for CNNs are equally effective for ViTs. Using linear probing and MLP-K fine-tuning, we benchmark two ViT backbones (ViT-B/16 and ViT-L/16) using three commonly used classification losses: Cross Entropy (CE), Focal Loss (FL), and Mean Absolute Error (MAE), alongside six robust NLL methods: GCE, SCE, NLNL, APL, NCE+AGCE, and ANL-CE. The evaluation is conducted across six datasets including MNIST, CIFAR-10/100, WebVision, Clothing1M, and Food-101N. Furthermore, we explore whether implicit prediction entropy minimization contributes to ViT robustness against noisy labels, noting a general trend of prediction entropy reduction across most NLL methods. Building on this observation, we examine whether explicit entropy minimization could enhance ViT resilience to noisy labels. Our findings indicate that incorporating entropy regularization enhances the performance of established loss functions such as CE and FL, as well as the robustness of the six studied NLL methods across both ViT backbones.
Abstract:We propose the first comprehensive approach for modeling and analyzing the spatiotemporal shape variability in tree-like 4D objects, i.e., 3D objects whose shapes bend, stretch, and change in their branching structure over time as they deform, grow, and interact with their environment. Our key contribution is the representation of tree-like 3D shapes using Square Root Velocity Function Trees (SRVFT). By solving the spatial registration in the SRVFT space, which is equipped with an L2 metric, 4D tree-shaped structures become time-parameterized trajectories in this space. This reduces the problem of modeling and analyzing 4D tree-like shapes to that of modeling and analyzing elastic trajectories in the SRVFT space, where elasticity refers to time warping. In this paper, we propose a novel mathematical representation of the shape space of such trajectories, a Riemannian metric on that space, and computational tools for fast and accurate spatiotemporal registration and geodesics computation between 4D tree-shaped structures. Leveraging these building blocks, we develop a full framework for modelling the spatiotemporal variability using statistical models and generating novel 4D tree-like structures from a set of exemplars. We demonstrate and validate the proposed framework using real 4D plant data.
Abstract:This paper investigates the role of CLIP image embeddings within the Stable Video Diffusion (SVD) framework, focusing on their impact on video generation quality and computational efficiency. Our findings indicate that CLIP embeddings, while crucial for aesthetic quality, do not significantly contribute towards the subject and background consistency of video outputs. Moreover, the computationally expensive cross-attention mechanism can be effectively replaced by a simpler linear layer. This layer is computed only once at the first diffusion inference step, and its output is then cached and reused throughout the inference process, thereby enhancing efficiency while maintaining high-quality outputs. Building on these insights, we introduce the VCUT, a training-free approach optimized for efficiency within the SVD architecture. VCUT eliminates temporal cross-attention and replaces spatial cross-attention with a one-time computed linear layer, significantly reducing computational load. The implementation of VCUT leads to a reduction of up to 322T Multiple-Accumulate Operations (MACs) per video and a decrease in model parameters by up to 50M, achieving a 20% reduction in latency compared to the baseline. Our approach demonstrates that conditioning during the Semantic Binding stage is sufficient, eliminating the need for continuous computation across all inference steps and setting a new standard for efficient video generation.
Abstract:Neuromorphic sensors, specifically event cameras, revolutionize visual data acquisition by capturing pixel intensity changes with exceptional dynamic range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the development in this field is currently slowed by the lack of comprehensive, large-scale datasets, which are critical for developing robust recognition frameworks. To bridge this gap, we introduces DailyDVS-200, a meticulously curated benchmark dataset tailored for the event-based action recognition community. DailyDVS-200 is extensive, covering 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences. This dataset is designed to reflect a broad spectrum of action types, scene complexities, and data acquisition diversity. Each sequence in the dataset is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions. Moreover, DailyDVS-200 is structured to facilitate a wide range of research paths, offering a solid foundation for both validating existing approaches and inspiring novel methodologies. By setting a new benchmark in the field, we challenge the current limitations of neuromorphic data processing and invite a surge of new approaches in event-based action recognition techniques, which paves the way for future explorations in neuromorphic computing and beyond. The dataset and source code are available at https://github.com/QiWang233/DailyDVS-200.
Abstract:Estimating depth from single RGB images and videos is of widespread interest due to its applications in many areas, including autonomous driving, 3D reconstruction, digital entertainment, and robotics. More than 500 deep learning-based papers have been published in the past 10 years, which indicates the growing interest in the task. This paper presents a comprehensive survey of the existing deep learning-based methods, the challenges they address, and how they have evolved in their architecture and supervision methods. It provides a taxonomy for classifying the current work based on their input and output modalities, network architectures, and learning methods. It also discusses the major milestones in the history of monocular depth estimation, and different pipelines, datasets, and evaluation metrics used in existing methods.
Abstract:Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes. Addressing RFI involves intricate heuristic algorithms, manual examination, and, increasingly, machine learning methods. Given the dynamic and temporal nature of radio astronomy observations, Spiking Neural Networks (SNNs) emerge as a promising approach. In this study, we cast RFI detection as a supervised multi-variate time-series segmentation problem. Notably, our investigation explores the encoding of radio astronomy visibility data for SNN inference, considering six encoding schemes: rate, latency, delta-modulation, and three variations of the step-forward algorithm. We train a small two-layer fully connected SNN on simulated data derived from the Hydrogen Epoch of Reionization Array (HERA) telescope and perform extensive hyper-parameter optimization. Results reveal that latency encoding exhibits superior performance, achieving a per-pixel accuracy of 98.8% and an f1-score of 0.761. Remarkably, these metrics approach those of contemporary RFI detection algorithms, notwithstanding the simplicity and compactness of our proposed network architecture. This study underscores the potential of RFI detection as a benchmark problem for SNN researchers, emphasizing the efficacy of SNNs in addressing complex time-series segmentation tasks in radio astronomy.
Abstract:This paper proposes Comprehensive Pathology Language Image Pre-training (CPLIP), a new unsupervised technique designed to enhance the alignment of images and text in histopathology for tasks such as classification and segmentation. This methodology enriches vision-language models by leveraging extensive data without needing ground truth annotations. CPLIP involves constructing a pathology-specific dictionary, generating textual descriptions for images using language models, and retrieving relevant images for each text snippet via a pre-trained model. The model is then fine-tuned using a many-to-many contrastive learning method to align complex interrelated concepts across both modalities. Evaluated across multiple histopathology tasks, CPLIP shows notable improvements in zero-shot learning scenarios, outperforming existing methods in both interpretability and robustness and setting a higher benchmark for the application of vision-language models in the field. To encourage further research and replication, the code for CPLIP is available on GitHub at https://cplip.github.io/
Abstract:While neural networks have excelled in video action recognition tasks, their black-box nature often obscures the understanding of their decision-making processes. Recent approaches used inherently interpretable models to analyze video actions in a manner akin to human reasoning. These models, however, usually fall short in performance compared to their black-box counterparts. In this work, we present a new framework named Language-guided Interpretable Action Recognition framework (LaIAR). LaIAR leverages knowledge from language models to enhance both the recognition capabilities and the interpretability of video models. In essence, we redefine the problem of understanding video model decisions as a task of aligning video and language models. Using the logical reasoning captured by the language model, we steer the training of the video model. This integrated approach not only improves the video model's adaptability to different domains but also boosts its overall performance. Extensive experiments on two complex video action datasets, Charades & CAD-120, validates the improved performance and interpretability of our LaIAR framework. The code of LaIAR is available at https://github.com/NingWang2049/LaIAR.