Abstract:This paper introduces the concept of employing neuromorphic methodologies for task-oriented underwater robotics applications. In contrast to the increasing computational demands of conventional deep learning algorithms, neuromorphic technology, leveraging spiking neural network architectures, promises sophisticated artificial intelligence with significantly reduced computational requirements and power consumption, emulating human brain operational principles. Despite documented neuromorphic technology applications in various robotic domains, its utilization in marine robotics remains largely unexplored. Thus, this article proposes a unified framework for integrating neuromorphic technologies for perception, pose estimation, and haptic-guided conditional control of underwater vehicles, customized to specific user-defined objectives. This conceptual framework stands to revolutionize underwater robotics, enhancing efficiency and autonomy while reducing energy consumption. By enabling greater adaptability and robustness, this advancement could facilitate applications such as underwater exploration, environmental monitoring, and infrastructure maintenance, thereby contributing to significant progress in marine science and technology.
Abstract:This paper delves into the potential of DU-VIO, a dehazing-aided hybrid multi-rate multi-modal Visual-Inertial Odometry (VIO) estimation framework, designed to thrive in the challenging realm of extreme underwater environments. The cutting-edge DU-VIO framework is incorporating a GAN-based pre-processing module and a hybrid CNN-LSTM module for precise pose estimation, using visibility-enhanced underwater images and raw IMU data. Accurate pose estimation is paramount for various underwater robotics and exploration applications. However, underwater visibility is often compromised by suspended particles and attenuation effects, rendering visual-inertial pose estimation a formidable challenge. DU-VIO aims to overcome these limitations by effectively removing visual disturbances from raw image data, enhancing the quality of image features used for pose estimation. We demonstrate the effectiveness of DU-VIO by calculating RMSE scores for translation and rotation vectors in comparison to their reference values. These scores are then compared to those of a base model using a modified AQUALOC Dataset. This study's significance lies in its potential to revolutionize underwater robotics and exploration. DU-VIO offers a robust solution to the persistent challenge of underwater visibility, significantly improving the accuracy of pose estimation. This research contributes valuable insights and tools for advancing underwater technology, with far-reaching implications for scientific research, environmental monitoring, and industrial applications.
Abstract:We observe that the performance of SOTA visual trackers surprisingly strongly varies across different video attributes and datasets. No single tracker remains the best performer across all tracking attributes and datasets. To bridge this gap, for a given video sequence, we predict the "Best of the N Trackers", called the BofN meta-tracker. At its core, a Tracking Performance Prediction Network (TP2N) selects a predicted best performing visual tracker for the given video sequence using only a few initial frames. We also introduce a frame-level BofN meta-tracker which keeps predicting best performer after regular temporal intervals. The TP2N is based on self-supervised learning architectures MocoV2, SwAv, BT, and DINO; experiments show that the DINO with ViT-S as a backbone performs the best. The video-level BofN meta-tracker outperforms, by a large margin, existing SOTA trackers on nine standard benchmarks - LaSOT, TrackingNet, GOT-10K, VOT2019, VOT2021, VOT2022, UAV123, OTB100, and WebUAV-3M. Further improvement is achieved by the frame-level BofN meta-tracker effectively handling variations in the tracking scenarios within long sequences. For instance, on GOT-10k, BofN meta-tracker average overlap is 88.7% and 91.1% with video and frame-level settings respectively. The best performing tracker, RTS, achieves 85.20% AO. On VOT2022, BofN expected average overlap is 67.88% and 70.98% with video and frame level settings, compared to the best performing ARTrack, 64.12%. This work also presents an extensive evaluation of competitive tracking methods on all commonly used benchmarks, following their protocols. The code, the trained models, and the results will soon be made publicly available on https://github.com/BasitAlawode/Best_of_N_Trackers.
Abstract:This paper proposes Comprehensive Pathology Language Image Pre-training (CPLIP), a new unsupervised technique designed to enhance the alignment of images and text in histopathology for tasks such as classification and segmentation. This methodology enriches vision-language models by leveraging extensive data without needing ground truth annotations. CPLIP involves constructing a pathology-specific dictionary, generating textual descriptions for images using language models, and retrieving relevant images for each text snippet via a pre-trained model. The model is then fine-tuned using a many-to-many contrastive learning method to align complex interrelated concepts across both modalities. Evaluated across multiple histopathology tasks, CPLIP shows notable improvements in zero-shot learning scenarios, outperforming existing methods in both interpretability and robustness and setting a higher benchmark for the application of vision-language models in the field. To encourage further research and replication, the code for CPLIP is available on GitHub at https://cplip.github.io/
Abstract:Video anomaly detection (VAD) holds immense importance across diverse domains such as surveillance, healthcare, and environmental monitoring. While numerous surveys focus on conventional VAD methods, they often lack depth in exploring specific approaches and emerging trends. This survey explores deep learning-based VAD, expanding beyond traditional supervised training paradigms to encompass emerging weakly supervised, self-supervised, and unsupervised approaches. A prominent feature of this review is the investigation of core challenges within the VAD paradigms including large-scale datasets, features extraction, learning methods, loss functions, regularization, and anomaly score prediction. Moreover, this review also investigates the vision language models (VLMs) as potent feature extractors for VAD. VLMs integrate visual data with textual descriptions or spoken language from videos, enabling a nuanced understanding of scenes crucial for anomaly detection. By addressing these challenges and proposing future research directions, this review aims to foster the development of robust and efficient VAD systems leveraging the capabilities of VLMs for enhanced anomaly detection in complex real-world scenarios. This comprehensive analysis seeks to bridge existing knowledge gaps, provide researchers with valuable insights, and contribute to shaping the future of VAD research.
Abstract:Moving object segmentation is critical to interpret scene dynamics for robotic navigation systems in challenging environments. Neuromorphic vision sensors are tailored for motion perception due to their asynchronous nature, high temporal resolution, and reduced power consumption. However, their unconventional output requires novel perception paradigms to leverage their spatially sparse and temporally dense nature. In this work, we propose a novel event-based motion segmentation algorithm using a Graph Transformer Neural Network, dubbed GTNN. Our proposed algorithm processes event streams as 3D graphs by a series of nonlinear transformations to unveil local and global spatiotemporal correlations between events. Based on these correlations, events belonging to moving objects are segmented from the background without prior knowledge of the dynamic scene geometry. The algorithm is trained on publicly available datasets including MOD, EV-IMO, and \textcolor{black}{EV-IMO2} using the proposed training scheme to facilitate efficient training on extensive datasets. Moreover, we introduce the Dynamic Object Mask-aware Event Labeling (DOMEL) approach for generating approximate ground-truth labels for event-based motion segmentation datasets. We use DOMEL to label our own recorded Event dataset for Motion Segmentation (EMS-DOMEL), which we release to the public for further research and benchmarking. Rigorous experiments are conducted on several unseen publicly-available datasets where the results revealed that GTNN outperforms state-of-the-art methods in the presence of dynamic background variations, motion patterns, and multiple dynamic objects with varying sizes and velocities. GTNN achieves significant performance gains with an average increase of 9.4% and 4.5% in terms of motion segmentation accuracy (IoU%) and detection rate (DR%), respectively.
Abstract:Deforestation, a major contributor to climate change, poses detrimental consequences such as agricultural sector disruption, global warming, flash floods, and landslides. Conventional approaches to urban street tree inventory suffer from inaccuracies and necessitate specialised equipment. To overcome these challenges, this paper proposes an innovative method that leverages deep learning techniques and mobile phone imaging for urban street tree inventory. Our approach utilises a pair of images captured by smartphone cameras to accurately segment tree trunks and compute the diameter at breast height (DBH). Compared to traditional methods, our approach exhibits several advantages, including superior accuracy, reduced dependency on specialised equipment, and applicability in hard-to-reach areas. We evaluated our method on a comprehensive dataset of 400 trees and achieved a DBH estimation accuracy with an error rate of less than 2.5%. Our method holds significant potential for substantially improving forest management practices. By enhancing the accuracy and efficiency of tree inventory, our model empowers urban management to mitigate the adverse effects of deforestation and climate change.
Abstract:Analysis of the 3D Texture is indispensable for various tasks, such as retrieval, segmentation, classification, and inspection of sculptures, knitted fabrics, and biological tissues. A 3D texture is a locally repeated surface variation independent of the surface's overall shape and can be determined using the local neighborhood and its characteristics. Existing techniques typically employ computer vision techniques that analyze a 3D mesh globally, derive features, and then utilize the obtained features for retrieval or classification. Several traditional and learning-based methods exist in the literature, however, only a few are on 3D texture, and nothing yet, to the best of our knowledge, on the unsupervised schemes. This paper presents an original framework for the unsupervised segmentation of the 3D texture on the mesh manifold. We approach this problem as binary surface segmentation, partitioning the mesh surface into textured and non-textured regions without prior annotation. We devise a mutual transformer-based system comprising a label generator and a cleaner. The two models take geometric image representations of the surface mesh facets and label them as texture or non-texture across an iterative mutual learning scheme. Extensive experiments on three publicly available datasets with diverse texture patterns demonstrate that the proposed framework outperforms standard and SOTA unsupervised techniques and competes reasonably with supervised methods.
Abstract:Video background subtraction is one of the fundamental problems in computer vision that aims to segment all moving objects. Robust principal component analysis has been identified as a promising unsupervised paradigm for background subtraction tasks in the last decade thanks to its competitive performance in a number of benchmark datasets. Tensor robust principal component analysis variations have improved background subtraction performance further. However, because moving object pixels in the sparse component are treated independently and do not have to adhere to spatial-temporal structured-sparsity constraints, performance is reduced for sequences with dynamic backgrounds, camouflaged, and camera jitter problems. In this work, we present a spatial-temporal regularized tensor sparse RPCA algorithm for precise background subtraction. Within the sparse component, we impose spatial-temporal regularizations in the form of normalized graph-Laplacian matrices. To do this, we build two graphs, one across the input tensor spatial locations and the other across its frontal slices in the time domain. While maximizing the objective function, we compel the tensor sparse component to serve as the spatiotemporal eigenvectors of the graph-Laplacian matrices. The disconnected moving object pixels in the sparse component are preserved by the proposed graph-based regularizations since they both comprise of spatiotemporal subspace-based structure. Additionally, we propose a unique objective function that employs batch and online-based optimization methods to jointly maximize the background-foreground and spatial-temporal regularization components. Experiments are performed on six publicly available background subtraction datasets that demonstrate the superior performance of the proposed algorithm compared to several existing methods. Our source code will be available very soon.
Abstract:This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT). Despite its significance, underwater tracking has remained unexplored due to data inaccessibility. It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles. Performance of traditional tracking methods designed primarily for terrestrial or open-air scenarios drops in such conditions. We address the problem by proposing a novel underwater image enhancement algorithm designed specifically to boost tracking quality. The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers. To develop robust and accurate UVOT methods, large-scale datasets are required. To this end, we introduce a large-scale UVOT benchmark dataset consisting of 400 video segments and 275,000 manually annotated frames enabling underwater training and evaluation of deep trackers. The videos are labelled with several underwater-specific tracking attributes including watercolor variation, target distractors, camouflage, target relative size, and low visibility conditions. The UVOT400 dataset, tracking results, and the code are publicly available on: https://github.com/BasitAlawode/UWVOT400.