Abstract:Vision-Language Models (VLMs) trained via contrastive learning have achieved notable success in natural image tasks. However, their application in the medical domain remains limited due to the scarcity of openly accessible, large-scale medical image-text datasets. Existing medical VLMs either train on closed-source proprietary or relatively small open-source datasets that do not generalize well. Similarly, most models remain specific to a single or limited number of medical imaging domains, again restricting their applicability to other modalities. To address this gap, we introduce UniMed, a large-scale, open-source multi-modal medical dataset comprising over 5.3 million image-text pairs across six diverse imaging modalities: X-ray, CT, MRI, Ultrasound, Pathology, and Fundus. UniMed is developed using a data-collection framework that leverages Large Language Models (LLMs) to transform modality-specific classification datasets into image-text formats while incorporating existing image-text data from the medical domain, facilitating scalable VLM pretraining. Using UniMed, we trained UniMed-CLIP, a unified VLM for six modalities that significantly outperforms existing generalist VLMs and matches modality-specific medical VLMs, achieving notable gains in zero-shot evaluations. For instance, UniMed-CLIP improves over BiomedCLIP (trained on proprietary data) by an absolute gain of +12.61, averaged over 21 datasets, while using 3x less training data. To facilitate future research, we release UniMed dataset, training codes, and models at https://github.com/mbzuai-oryx/UniMed-CLIP.
Abstract:Capitalizing on vast amount of image-text data, large-scale vision-language pre-training has demonstrated remarkable zero-shot capabilities and has been utilized in several applications. However, models trained on general everyday web-crawled data often exhibit sub-optimal performance for specialized domains, likely due to domain shift. Recent works have tackled this problem for some domains (e.g., healthcare) by constructing domain-specialized image-text data. However, constructing a dedicated large-scale image-text dataset for sustainable area of agriculture and livestock is still open to research. Further, this domain desires fine-grained feature learning due to the subtle nature of the downstream tasks (e.g, nutrient deficiency detection, livestock breed classification). To address this we present AgriCLIP, a vision-language foundational model dedicated to the domain of agriculture and livestock. First, we propose a large-scale dataset, named ALive, that leverages customized prompt generation strategy to overcome the scarcity of expert annotations. Our ALive dataset covers crops, livestock, and fishery, with around 600,000 image-text pairs. Second, we propose a training pipeline that integrates both contrastive and self-supervised learning to learn both global semantic and local fine-grained domain-specialized features. Experiments on diverse set of 20 downstream tasks demonstrate the effectiveness of AgriCLIP framework, achieving an absolute gain of 7.8\% in terms of average zero-shot classification accuracy, over the standard CLIP adaptation via domain-specialized ALive dataset. Our ALive dataset and code can be accessible at \href{https://github.com/umair1221/AgriCLIP/tree/main}{Github}.
Abstract:Recent attention-based volumetric segmentation (VS) methods have achieved remarkable performance in the medical domain which focuses on modeling long-range dependencies. However, for voxel-wise prediction tasks, discriminative local features are key components for the performance of the VS models which is missing in attention-based VS methods. Aiming at resolving this issue, we deliberately incorporate the convolutional encoder branch with transformer backbone to extract local and global features in a parallel manner and aggregate them in Cross Feature Mixer Module (CFMM) for better prediction of segmentation mask. Consequently, we observe that the derived model, Y-CT-Net, achieves competitive performance on multiple medical segmentation tasks. For example, on multi-organ segmentation, Y-CT-Net achieves an 82.4% dice score, surpassing well-tuned VS Transformer/CNN-like baselines UNETR/ResNet-3D by 2.9%/1.4%. With the success of Y-CT-Net, we extend this concept with hybrid attention models, that derived Y-CH-Net model, which brings a 3% improvement in terms of HD95 score for same segmentation task. The effectiveness of both models Y-CT-Net and Y-CH-Net verifies our hypothesis and motivates us to initiate the concept of Y-CA-Net, a versatile generic architecture based upon any two encoders and a decoder backbones, to fully exploit the complementary strengths of both convolution and attention mechanisms. Based on experimental results, we argue Y-CA-Net is a key player in achieving superior results for volumetric segmentation.
Abstract:Large multimodal models (LMMs) have shown encouraging performance in the natural image domain using visual instruction tuning. However, these LMMs struggle to describe the content of remote sensing images for tasks such as image or region grounding, classification, etc. Recently, GeoChat make an effort to describe the contents of the RS images. Although, GeoChat achieves promising performance for various RS tasks, it struggles to describe the changes between bi-temporal RS images which is a key RS task. This necessitates the development of an LMM that can describe the changes between the bi-temporal RS images. However, there is insufficiency of datasets that can be utilized to tune LMMs. In order to achieve this, we introduce a change description instruction dataset that can be utilized to finetune an LMM and provide better change descriptions for RS images. Furthermore, we show that the LLaVA-1.5 model, with slight modifications, can be finetuned on the change description instruction dataset and achieve favorably better performance.
Abstract:State-space models (SSMs), exemplified by S4, have introduced a novel context modeling method by integrating state-space techniques into deep learning. However, they struggle with global context modeling due to their data-independent matrices. The Mamba model addressed this with data-dependent variants via the S6 selective-scan algorithm, enhancing context modeling, especially for long sequences. However, Mamba-based architectures are difficult to scale with respect to the number of parameters, which is a major limitation for vision applications. This paper addresses the scalability issue of large SSMs for image classification and action recognition without requiring additional techniques like knowledge distillation. We analyze the distinct characteristics of Mamba-based and Attention-based models, proposing a Mamba-Attention interleaved architecture that enhances scalability, robustness, and performance. We demonstrate that the stable and efficient interleaved architecture resolves the scalability issue of Mamba-based architectures for images and videos and increases robustness to common artifacts like JPEG compression. Our thorough evaluation on the ImageNet-1K, Kinetics-400 and Something-Something-v2 benchmarks demonstrates that our approach improves the accuracy of state-of-the-art Mamba-based architectures by up to $+1.7$.
Abstract:The rapid proliferation of large-scale text-to-image generation (T2IG) models has led to concerns about their potential misuse in generating harmful content. Though many methods have been proposed for erasing undesired concepts from T2IG models, they only provide a false sense of security, as recent works demonstrate that concept-erased models (CEMs) can be easily deceived to generate the erased concept through adversarial attacks. The problem of adversarially robust concept erasing without significant degradation to model utility (ability to generate benign concepts) remains an unresolved challenge, especially in the white-box setting where the adversary has access to the CEM. To address this gap, we propose an approach called STEREO that involves two distinct stages. The first stage searches thoroughly enough for strong and diverse adversarial prompts that can regenerate an erased concept from a CEM, by leveraging robust optimization principles from adversarial training. In the second robustly erase once stage, we introduce an anchor-concept-based compositional objective to robustly erase the target concept at one go, while attempting to minimize the degradation on model utility. By benchmarking the proposed STEREO approach against four state-of-the-art concept erasure methods under three adversarial attacks, we demonstrate its ability to achieve a better robustness vs. utility trade-off. Our code and models are available at https://github.com/koushiksrivats/robust-concept-erasing.
Abstract:Medical vision-language models (Med-VLMs) trained on large datasets of medical image-text pairs and later fine-tuned for specific tasks have emerged as a mainstream paradigm in medical image analysis. However, recent studies have highlighted the susceptibility of these Med-VLMs to adversarial attacks, raising concerns about their safety and robustness. Randomized smoothing is a well-known technique for turning any classifier into a model that is certifiably robust to adversarial perturbations. However, this approach requires retraining the Med-VLM-based classifier so that it classifies well under Gaussian noise, which is often infeasible in practice. In this paper, we propose a novel framework called PromptSmooth to achieve efficient certified robustness of Med-VLMs by leveraging the concept of prompt learning. Given any pre-trained Med-VLM, PromptSmooth adapts it to handle Gaussian noise by learning textual prompts in a zero-shot or few-shot manner, achieving a delicate balance between accuracy and robustness, while minimizing the computational overhead. Moreover, PromptSmooth requires only a single model to handle multiple noise levels, which substantially reduces the computational cost compared to traditional methods that rely on training a separate model for each noise level. Comprehensive experiments based on three Med-VLMs and across six downstream datasets of various imaging modalities demonstrate the efficacy of PromptSmooth. Our code and models are available at https://github.com/nhussein/promptsmooth.
Abstract:Deep learning-based face recognition (FR) systems pose significant privacy risks by tracking users without their consent. While adversarial attacks can protect privacy, they often produce visible artifacts compromising user experience. To mitigate this issue, recent facial privacy protection approaches advocate embedding adversarial noise into the natural looking makeup styles. However, these methods require training on large-scale makeup datasets that are not always readily available. In addition, these approaches also suffer from dataset bias. For instance, training on makeup data that predominantly contains female faces could compromise protection efficacy for male faces. To handle these issues, we propose a test-time optimization approach that solely optimizes an untrained neural network to transfer makeup style from a reference to a source image in an adversarial manner. We introduce two key modules: a correspondence module that aligns regions between reference and source images in latent space, and a decoder with conditional makeup layers. The untrained decoder, optimized via carefully designed structural and makeup consistency losses, generates a protected image that resembles the source but incorporates adversarial makeup to deceive FR models. As our approach does not rely on training with makeup face datasets, it avoids potential male/female dataset biases while providing effective protection. We further extend the proposed approach to videos by leveraging on temporal correlations. Experiments on benchmark datasets demonstrate superior performance in face verification and identification tasks and effectiveness against commercial FR systems. Our code and models will be available at https://github.com/fahadshamshad/deep-facial-privacy-prior
Abstract:Medical foundation models are gaining prominence in the medical community for their ability to derive general representations from extensive collections of medical image-text pairs. Recent research indicates that these models are susceptible to backdoor attacks, which allow them to classify clean images accurately but fail when specific triggers are introduced. However, traditional backdoor attacks necessitate a considerable amount of additional data to maliciously pre-train a model. This requirement is often impractical in medical imaging applications due to the usual scarcity of data. Inspired by the latest developments in learnable prompts, this work introduces a method to embed a backdoor into the medical foundation model during the prompt learning phase. By incorporating learnable prompts within the text encoder and introducing imperceptible learnable noise trigger to the input images, we exploit the full capabilities of the medical foundation models (Med-FM). Our method, BAPLe, requires only a minimal subset of data to adjust the noise trigger and the text prompts for downstream tasks, enabling the creation of an effective backdoor attack. Through extensive experiments with four medical foundation models, each pre-trained on different modalities and evaluated across six downstream datasets, we demonstrate the efficacy of our approach. BAPLe achieves a high backdoor success rate across all models and datasets, outperforming the baseline backdoor attack methods. Our work highlights the vulnerability of Med-FMs towards backdoor attacks and strives to promote the safe adoption of Med-FMs before their deployment in real-world applications. Code is available at https://asif-hanif.github.io/baple/.
Abstract:With the advent of large pre-trained transformer models, fine-tuning these models for various downstream tasks is a critical problem. Paucity of training data, the existence of data silos, and stringent privacy constraints exacerbate this fine-tuning problem in the medical imaging domain, creating a strong need for algorithms that enable collaborative fine-tuning of pre-trained models. Moreover, the large size of these models necessitates the use of parameter-efficient fine-tuning (PEFT) to reduce the communication burden in federated learning. In this work, we systematically investigate various federated PEFT strategies for adapting a Vision Transformer (ViT) model (pre-trained on a large natural image dataset) for medical image classification. Apart from evaluating known PEFT techniques, we introduce new federated variants of PEFT algorithms such as visual prompt tuning (VPT), low-rank decomposition of visual prompts, stochastic block attention fine-tuning, and hybrid PEFT methods like low-rank adaptation (LoRA)+VPT. Moreover, we perform a thorough empirical analysis to identify the optimal PEFT method for the federated setting and understand the impact of data distribution on federated PEFT, especially for out-of-domain (OOD) and non-IID data. The key insight of this study is that while most federated PEFT methods work well for in-domain transfer, there is a substantial accuracy vs. efficiency trade-off when dealing with OOD and non-IID scenarios, which is commonly the case in medical imaging. Specifically, every order of magnitude reduction in fine-tuned/exchanged parameters can lead to a 4% drop in accuracy. Thus, the initial model choice is crucial for federated PEFT. It is preferable to use medical foundation models learned from in-domain medical image data (if available) rather than general vision models.