Abstract:Data augmentation is widely used to enhance generalization in visual classification tasks. However, traditional methods struggle when source and target domains differ, as in domain adaptation, due to their inability to address domain gaps. This paper introduces GenMix, a generalizable prompt-guided generative data augmentation approach that enhances both in-domain and cross-domain image classification. Our technique leverages image editing to generate augmented images based on custom conditional prompts, designed specifically for each problem type. By blending portions of the input image with its edited generative counterpart and incorporating fractal patterns, our approach mitigates unrealistic images and label ambiguity, improving the performance and adversarial robustness of the resulting models. Efficacy of our method is established with extensive experiments on eight public datasets for general and fine-grained classification, in both in-domain and cross-domain settings. Additionally, we demonstrate performance improvements for self-supervised learning, learning with data scarcity, and adversarial robustness. As compared to the existing state-of-the-art methods, our technique achieves stronger performance across the board.
Abstract:One of the most common defense strategies against model poisoning in federated learning is to employ a robust aggregator mechanism that makes the training more resilient. Many of the existing Byzantine robust aggregators provide theoretical guarantees and are empirically effective against certain categories of attacks. However, we observe that certain high-strength attacks can subvert the aggregator and collapse the training. In addition, most aggregators require identifying tolerant settings to converge. Impact of attacks becomes more pronounced when the number of Byzantines is near-majority, and becomes harder to evade if the attacker is omniscient with access to data, honest updates and aggregation methods. Motivated by these observations, we develop a robust aggregator called FedRISE for cross-silo FL that is consistent and less susceptible to poisoning updates by an omniscient attacker. The proposed method explicitly determines the optimal direction of each gradient through a sign-voting strategy that uses variance-reduced sparse gradients. We argue that vote weighting based on the cosine similarity of raw gradients is misleading, and we introduce a sign-based gradient valuation function that ignores the gradient magnitude. We compare our method against 8 robust aggregators under 6 poisoning attacks on 3 datasets and architectures. Our results show that existing robust aggregators collapse for at least some attacks under severe settings, while FedRISE demonstrates better robustness because of a stringent gradient inclusion formulation.
Abstract:Statistical data heterogeneity is a significant barrier to convergence in federated learning (FL). While prior work has advanced heterogeneous FL through better optimization objectives, these methods fall short when there is extreme data heterogeneity among collaborating participants. We hypothesize that convergence under extreme data heterogeneity is primarily hindered due to the aggregation of conflicting updates from the participants in the initial collaboration rounds. To overcome this problem, we propose a warmup phase where each participant learns a personalized mask and updates only a subnetwork of the full model. This personalized warmup allows the participants to focus initially on learning specific subnetworks tailored to the heterogeneity of their data. After the warmup phase, the participants revert to standard federated optimization, where all parameters are communicated. We empirically demonstrate that the proposed personalized warmup via subnetworks (FedPeWS) approach improves accuracy and convergence speed over standard federated optimization methods.
Abstract:Survival analysis plays a crucial role in estimating the likelihood of future events for patients by modeling time-to-event data, particularly in healthcare settings where predictions about outcomes such as death and disease recurrence are essential. However, this analysis poses challenges due to the presence of censored data, where time-to-event information is missing for certain data points. Yet, censored data can offer valuable insights, provided we appropriately incorporate the censoring time during modeling. In this paper, we propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly. Additionally, we introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes. Through empirical evaluation on two real-world cancer datasets, we demonstrate SurvCORN's ability to maintain accurate ordering between patient outcomes while improving individual time-to-event predictions. Our contributions extend recent advancements in ordinal regression to survival analysis, offering valuable insights into accurate prognosis in healthcare settings.
Abstract:Advancements in generative modeling are pushing the state-of-the-art in synthetic medical image generation. These synthetic images can serve as an effective data augmentation method to aid the development of more accurate machine learning models for medical image analysis. While the fidelity of these synthetic images has progressively increased, the diversity of these images is an understudied phenomenon. In this work, we propose the SDICE index, which is based on the characterization of similarity distributions induced by a contrastive encoder. Given a synthetic dataset and a reference dataset of real images, the SDICE index measures the distance between the similarity score distributions of original and synthetic images, where the similarity scores are estimated using a pre-trained contrastive encoder. This distance is then normalized using an exponential function to provide a consistent metric that can be easily compared across domains. Experiments conducted on the MIMIC-chest X-ray and ImageNet datasets demonstrate the effectiveness of SDICE index in assessing synthetic medical dataset diversity.
Abstract:Medical vision-language models (Med-VLMs) trained on large datasets of medical image-text pairs and later fine-tuned for specific tasks have emerged as a mainstream paradigm in medical image analysis. However, recent studies have highlighted the susceptibility of these Med-VLMs to adversarial attacks, raising concerns about their safety and robustness. Randomized smoothing is a well-known technique for turning any classifier into a model that is certifiably robust to adversarial perturbations. However, this approach requires retraining the Med-VLM-based classifier so that it classifies well under Gaussian noise, which is often infeasible in practice. In this paper, we propose a novel framework called PromptSmooth to achieve efficient certified robustness of Med-VLMs by leveraging the concept of prompt learning. Given any pre-trained Med-VLM, PromptSmooth adapts it to handle Gaussian noise by learning textual prompts in a zero-shot or few-shot manner, achieving a delicate balance between accuracy and robustness, while minimizing the computational overhead. Moreover, PromptSmooth requires only a single model to handle multiple noise levels, which substantially reduces the computational cost compared to traditional methods that rely on training a separate model for each noise level. Comprehensive experiments based on three Med-VLMs and across six downstream datasets of various imaging modalities demonstrate the efficacy of PromptSmooth. Our code and models are available at https://github.com/nhussein/promptsmooth.
Abstract:The rapid proliferation of large-scale text-to-image generation (T2IG) models has led to concerns about their potential misuse in generating harmful content. Though many methods have been proposed for erasing undesired concepts from T2IG models, they only provide a false sense of security, as recent works demonstrate that concept-erased models (CEMs) can be easily deceived to generate the erased concept through adversarial attacks. The problem of adversarially robust concept erasing without significant degradation to model utility (ability to generate benign concepts) remains an unresolved challenge, especially in the white-box setting where the adversary has access to the CEM. To address this gap, we propose an approach called STEREO that involves two distinct stages. The first stage searches thoroughly enough for strong and diverse adversarial prompts that can regenerate an erased concept from a CEM, by leveraging robust optimization principles from adversarial training. In the second robustly erase once stage, we introduce an anchor-concept-based compositional objective to robustly erase the target concept at one go, while attempting to minimize the degradation on model utility. By benchmarking the proposed STEREO approach against four state-of-the-art concept erasure methods under three adversarial attacks, we demonstrate its ability to achieve a better robustness vs. utility trade-off. Our code and models are available at https://github.com/koushiksrivats/robust-concept-erasing.
Abstract:Deep learning-based face recognition (FR) systems pose significant privacy risks by tracking users without their consent. While adversarial attacks can protect privacy, they often produce visible artifacts compromising user experience. To mitigate this issue, recent facial privacy protection approaches advocate embedding adversarial noise into the natural looking makeup styles. However, these methods require training on large-scale makeup datasets that are not always readily available. In addition, these approaches also suffer from dataset bias. For instance, training on makeup data that predominantly contains female faces could compromise protection efficacy for male faces. To handle these issues, we propose a test-time optimization approach that solely optimizes an untrained neural network to transfer makeup style from a reference to a source image in an adversarial manner. We introduce two key modules: a correspondence module that aligns regions between reference and source images in latent space, and a decoder with conditional makeup layers. The untrained decoder, optimized via carefully designed structural and makeup consistency losses, generates a protected image that resembles the source but incorporates adversarial makeup to deceive FR models. As our approach does not rely on training with makeup face datasets, it avoids potential male/female dataset biases while providing effective protection. We further extend the proposed approach to videos by leveraging on temporal correlations. Experiments on benchmark datasets demonstrate superior performance in face verification and identification tasks and effectiveness against commercial FR systems. Our code and models will be available at https://github.com/fahadshamshad/deep-facial-privacy-prior
Abstract:Medical foundation models are gaining prominence in the medical community for their ability to derive general representations from extensive collections of medical image-text pairs. Recent research indicates that these models are susceptible to backdoor attacks, which allow them to classify clean images accurately but fail when specific triggers are introduced. However, traditional backdoor attacks necessitate a considerable amount of additional data to maliciously pre-train a model. This requirement is often impractical in medical imaging applications due to the usual scarcity of data. Inspired by the latest developments in learnable prompts, this work introduces a method to embed a backdoor into the medical foundation model during the prompt learning phase. By incorporating learnable prompts within the text encoder and introducing imperceptible learnable noise trigger to the input images, we exploit the full capabilities of the medical foundation models (Med-FM). Our method, BAPLe, requires only a minimal subset of data to adjust the noise trigger and the text prompts for downstream tasks, enabling the creation of an effective backdoor attack. Through extensive experiments with four medical foundation models, each pre-trained on different modalities and evaluated across six downstream datasets, we demonstrate the efficacy of our approach. BAPLe achieves a high backdoor success rate across all models and datasets, outperforming the baseline backdoor attack methods. Our work highlights the vulnerability of Med-FMs towards backdoor attacks and strives to promote the safe adoption of Med-FMs before their deployment in real-world applications. Code is available at https://asif-hanif.github.io/baple/.
Abstract:Multimodal networks have demonstrated remarkable performance improvements over their unimodal counterparts. Existing multimodal networks are designed in a multi-branch fashion that, due to the reliance on fusion strategies, exhibit deteriorated performance if one or more modalities are missing. In this work, we propose a modality invariant multimodal learning method, which is less susceptible to the impact of missing modalities. It consists of a single-branch network sharing weights across multiple modalities to learn inter-modality representations to maximize performance as well as robustness to missing modalities. Extensive experiments are performed on four challenging datasets including textual-visual (UPMC Food-101, Hateful Memes, Ferramenta) and audio-visual modalities (VoxCeleb1). Our proposed method achieves superior performance when all modalities are present as well as in the case of missing modalities during training or testing compared to the existing state-of-the-art methods.