Abstract:Statistical data heterogeneity is a significant barrier to convergence in federated learning (FL). While prior work has advanced heterogeneous FL through better optimization objectives, these methods fall short when there is extreme data heterogeneity among collaborating participants. We hypothesize that convergence under extreme data heterogeneity is primarily hindered due to the aggregation of conflicting updates from the participants in the initial collaboration rounds. To overcome this problem, we propose a warmup phase where each participant learns a personalized mask and updates only a subnetwork of the full model. This personalized warmup allows the participants to focus initially on learning specific subnetworks tailored to the heterogeneity of their data. After the warmup phase, the participants revert to standard federated optimization, where all parameters are communicated. We empirically demonstrate that the proposed personalized warmup via subnetworks (FedPeWS) approach improves accuracy and convergence speed over standard federated optimization methods.
Abstract:Federated learning (FL) has emerged as a pivotal approach in machine learning, enabling multiple participants to collaboratively train a global model without sharing raw data. While FL finds applications in various domains such as healthcare and finance, it is challenging to ensure global model convergence when participants do not contribute equally and/or honestly. To overcome this challenge, principled mechanisms are required to evaluate the contributions made by individual participants in the FL setting. Existing solutions for contribution assessment rely on general accuracy evaluation, often failing to capture nuanced dynamics and class-specific influences. This paper proposes a novel contribution assessment method called ShapFed for fine-grained evaluation of participant contributions in FL. Our approach uses Shapley values from cooperative game theory to provide a granular understanding of class-specific influences. Based on ShapFed, we introduce a weighted aggregation method called ShapFed-WA, which outperforms conventional federated averaging, especially in class-imbalanced scenarios. Personalizing participant updates based on their contributions further enhances collaborative fairness by delivering differentiated models commensurate with the participant contributions. Experiments on CIFAR-10, Chest X-Ray, and Fed-ISIC2019 datasets demonstrate the effectiveness of our approach in improving utility, efficiency, and fairness in FL systems. The code can be found at https://github.com/tnurbek/shapfed.
Abstract:Unsupervised (US) video anomaly detection (VAD) in surveillance applications is gaining more popularity recently due to its practical real-world applications. As surveillance videos are privacy sensitive and the availability of large-scale video data may enable better US-VAD systems, collaborative learning can be highly rewarding in this setting. However, due to the extremely challenging nature of the US-VAD task, where learning is carried out without any annotations, privacy-preserving collaborative learning of US-VAD systems has not been studied yet. In this paper, we propose a new baseline for anomaly detection capable of localizing anomalous events in complex surveillance videos in a fully unsupervised fashion without any labels on a privacy-preserving participant-based distributed training configuration. Additionally, we propose three new evaluation protocols to benchmark anomaly detection approaches on various scenarios of collaborations and data availability. Based on these protocols, we modify existing VAD datasets to extensively evaluate our approach as well as existing US SOTA methods on two large-scale datasets including UCF-Crime and XD-Violence. All proposed evaluation protocols, dataset splits, and codes are available here: https://github.com/AnasEmad11/CLAP
Abstract:Detection of anomalous events in videos is an important problem in applications such as surveillance. Video anomaly detection (VAD) is well-studied in the one-class classification (OCC) and weakly supervised (WS) settings. However, fully unsupervised (US) video anomaly detection methods, which learn a complete system without any annotation or human supervision, have not been explored in depth. This is because the lack of any ground truth annotations significantly increases the magnitude of the VAD challenge. To address this challenge, we propose a simple-but-effective two-stage pseudo-label generation framework that produces segment-level (normal/anomaly) pseudo-labels, which can be further used to train a segment-level anomaly detector in a supervised manner. The proposed coarse-to-fine pseudo-label (C2FPL) generator employs carefully-designed hierarchical divisive clustering and statistical hypothesis testing to identify anomalous video segments from a set of completely unlabeled videos. The trained anomaly detector can be directly applied on segments of an unseen test video to obtain segment-level, and subsequently, frame-level anomaly predictions. Extensive studies on two large-scale public-domain datasets, UCF-Crime and XD-Violence, demonstrate that the proposed unsupervised approach achieves superior performance compared to all existing OCC and US methods , while yielding comparable performance to the state-of-the-art WS methods.