Abstract:Data augmentation is widely used to enhance generalization in visual classification tasks. However, traditional methods struggle when source and target domains differ, as in domain adaptation, due to their inability to address domain gaps. This paper introduces GenMix, a generalizable prompt-guided generative data augmentation approach that enhances both in-domain and cross-domain image classification. Our technique leverages image editing to generate augmented images based on custom conditional prompts, designed specifically for each problem type. By blending portions of the input image with its edited generative counterpart and incorporating fractal patterns, our approach mitigates unrealistic images and label ambiguity, improving the performance and adversarial robustness of the resulting models. Efficacy of our method is established with extensive experiments on eight public datasets for general and fine-grained classification, in both in-domain and cross-domain settings. Additionally, we demonstrate performance improvements for self-supervised learning, learning with data scarcity, and adversarial robustness. As compared to the existing state-of-the-art methods, our technique achieves stronger performance across the board.
Abstract:Deep supervised learning models require high volume of labeled data to attain sufficiently good results. Although, the practice of gathering and annotating such big data is costly and laborious. Recently, the application of self supervised learning (SSL) in vision tasks has gained significant attention. The intuition behind SSL is to exploit the synchronous relationships within the data as a form of self-supervision, which can be versatile. In the current big data era, most of the data is unlabeled, and the success of SSL thus relies in finding ways to improve this vast amount of unlabeled data available. Thus its better for deep learning algorithms to reduce reliance on human supervision and instead focus on self-supervision based on the inherent relationships within the data. With the advent of ViTs, which have achieved remarkable results in computer vision, it is crucial to explore and understand the various SSL mechanisms employed for training these models specifically in scenarios where there is less label data available. In this survey we thus develop a comprehensive taxonomy of systematically classifying the SSL techniques based upon their representations and pre-training tasks being applied. Additionally, we discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field. Furthermore, we present a comparative analysis of different SSL methods, evaluate their strengths and limitations, and identify potential avenues for future research.
Abstract:Multimodal networks have demonstrated remarkable performance improvements over their unimodal counterparts. Existing multimodal networks are designed in a multi-branch fashion that, due to the reliance on fusion strategies, exhibit deteriorated performance if one or more modalities are missing. In this work, we propose a modality invariant multimodal learning method, which is less susceptible to the impact of missing modalities. It consists of a single-branch network sharing weights across multiple modalities to learn inter-modality representations to maximize performance as well as robustness to missing modalities. Extensive experiments are performed on four challenging datasets including textual-visual (UPMC Food-101, Hateful Memes, Ferramenta) and audio-visual modalities (VoxCeleb1). Our proposed method achieves superior performance when all modalities are present as well as in the case of missing modalities during training or testing compared to the existing state-of-the-art methods.
Abstract:Multimodal learning has demonstrated remarkable performance improvements over unimodal architectures. However, multimodal learning methods often exhibit deteriorated performances if one or more modalities are missing. This may be attributed to the commonly used multi-branch design containing modality-specific streams making the models reliant on the availability of a complete set of modalities. In this work, we propose a robust textual-visual multimodal learning method, Chameleon, that completely deviates from the conventional multi-branch design. To enable this, we present the unification of input modalities into one format by encoding textual modality into visual representations. As a result, our approach does not require modality-specific branches to learn modality-independent multimodal representations making it robust to missing modalities. Extensive experiments are performed on four popular challenging datasets including Hateful Memes, UPMC Food-101, MM-IMDb, and Ferramenta. Chameleon not only achieves superior performance when all modalities are present at train/test time but also demonstrates notable resilience in the case of missing modalities.
Abstract:Due to the rare occurrence of anomalous events, a typical approach to anomaly detection is to train an autoencoder (AE) with normal data only so that it learns the patterns or representations of the normal training data. At test time, the trained AE is expected to well reconstruct normal but to poorly reconstruct anomalous data. However, contrary to the expectation, anomalous data is often well reconstructed as well. In order to further separate the reconstruction quality between normal and anomalous data, we propose creating pseudo anomalies from learned adaptive noise by exploiting the aforementioned weakness of AE, i.e., reconstructing anomalies too well. The generated noise is added to the normal data to create pseudo anomalies. Extensive experiments on Ped2, Avenue, ShanghaiTech, CIFAR-10, and KDDCUP datasets demonstrate the effectiveness and generic applicability of our approach in improving the discriminative capability of AEs for anomaly detection.
Abstract:The advancements of technology have led to the use of multimodal systems in various real-world applications. Among them, the audio-visual systems are one of the widely used multimodal systems. In the recent years, associating face and voice of a person has gained attention due to presence of unique correlation between them. The Face-voice Association in Multilingual Environments (FAME) Challenge 2024 focuses on exploring face-voice association under a unique condition of multilingual scenario. This condition is inspired from the fact that half of the world's population is bilingual and most often people communicate under multilingual scenario. The challenge uses a dataset namely, Multilingual Audio-Visual (MAV-Celeb) for exploring face-voice association in multilingual environments. This report provides the details of the challenge, dataset, baselines and task details for the FAME Challenge.
Abstract:Unsupervised (US) video anomaly detection (VAD) in surveillance applications is gaining more popularity recently due to its practical real-world applications. As surveillance videos are privacy sensitive and the availability of large-scale video data may enable better US-VAD systems, collaborative learning can be highly rewarding in this setting. However, due to the extremely challenging nature of the US-VAD task, where learning is carried out without any annotations, privacy-preserving collaborative learning of US-VAD systems has not been studied yet. In this paper, we propose a new baseline for anomaly detection capable of localizing anomalous events in complex surveillance videos in a fully unsupervised fashion without any labels on a privacy-preserving participant-based distributed training configuration. Additionally, we propose three new evaluation protocols to benchmark anomaly detection approaches on various scenarios of collaborations and data availability. Based on these protocols, we modify existing VAD datasets to extensively evaluate our approach as well as existing US SOTA methods on two large-scale datasets including UCF-Crime and XD-Violence. All proposed evaluation protocols, dataset splits, and codes are available here: https://github.com/AnasEmad11/CLAP
Abstract:In order to devise an anomaly detection model using only normal training data, an autoencoder (AE) is typically trained to reconstruct the data. As a result, the AE can extract normal representations in its latent space. During test time, since AE is not trained using real anomalies, it is expected to poorly reconstruct the anomalous data. However, several researchers have observed that it is not the case. In this work, we propose to limit the reconstruction capability of AE by introducing a novel latent constriction loss, which is added to the existing reconstruction loss. By using our method, no extra computational cost is added to the AE during test time. Evaluations using three video anomaly detection benchmark datasets, i.e., Ped2, Avenue, and ShanghaiTech, demonstrate the effectiveness of our method in limiting the reconstruction capability of AE, which leads to a better anomaly detection model.
Abstract:Due to the rarity of anomalous events, video anomaly detection is typically approached as one-class classification (OCC) problem. Typically in OCC, an autoencoder (AE) is trained to reconstruct the normal only training data with the expectation that, in test time, it can poorly reconstruct the anomalous data. However, previous studies have shown that, even trained with only normal data, AEs can often reconstruct anomalous data as well, resulting in a decreased performance. To mitigate this problem, we propose to limit the anomaly reconstruction capability of AEs by incorporating pseudo anomalies during the training of an AE. Extensive experiments using five types of pseudo anomalies show the robustness of our training mechanism towards any kind of pseudo anomaly. Moreover, we demonstrate the effectiveness of our proposed pseudo anomaly based training approach against several existing state-ofthe-art (SOTA) methods on three benchmark video anomaly datasets, outperforming all the other reconstruction-based approaches in two datasets and showing the second best performance in the other dataset.
Abstract:With the rapid growth of social media platforms, users are sharing billions of multimedia posts containing audio, images, and text. Researchers have focused on building autonomous systems capable of processing such multimedia data to solve challenging multimodal tasks including cross-modal retrieval, matching, and verification. Existing works use separate networks to extract embeddings of each modality to bridge the gap between them. The modular structure of their branched networks is fundamental in creating numerous multimodal applications and has become a defacto standard to handle multiple modalities. In contrast, we propose a novel single-branch network capable of learning discriminative representation of unimodal as well as multimodal tasks without changing the network. An important feature of our single-branch network is that it can be trained either using single or multiple modalities without sacrificing performance. We evaluated our proposed single-branch network on the challenging multimodal problem (face-voice association) for cross-modal verification and matching tasks with various loss formulations. Experimental results demonstrate the superiority of our proposed single-branch network over the existing methods in a wide range of experiments. Code: https://github.com/msaadsaeed/SBNet