Mohamed Bin Zayed University of Artificial Intelligence, UAE
Abstract:Test-time prompt tuning (TPT) has emerged as a promising technique for adapting large vision-language models (VLMs) to unseen tasks without relying on labeled data. However, the lack of dispersion between textual features can hurt calibration performance, which raises concerns about VLMs' reliability, trustworthiness, and safety. Current TPT approaches primarily focus on improving prompt calibration by either maximizing average textual feature dispersion or enforcing orthogonality constraints to encourage angular separation. However, these methods may not always have optimal angular separation between class-wise textual features, which implies overlooking the critical role of angular diversity. To address this, we propose A-TPT, a novel TPT framework that introduces angular diversity to encourage uniformity in the distribution of normalized textual features induced by corresponding learnable prompts. This uniformity is achieved by maximizing the minimum pairwise angular distance between features on the unit hypersphere. We show that our approach consistently surpasses state-of-the-art TPT methods in reducing the aggregate average calibration error while maintaining comparable accuracy through extensive experiments with various backbones on different datasets. Notably, our approach exhibits superior zero-shot calibration performance on natural distribution shifts and generalizes well to medical datasets. We provide extensive analyses, including theoretical aspects, to establish the grounding of A-TPT. These results highlight the potency of promoting angular diversity to achieve well-dispersed textual features, significantly improving VLM calibration during test-time adaptation. Our code will be made publicly available.
Abstract:With the rise in consumer depth cameras, a wealth of unlabeled RGB-D data has become available. This prompts the question of how to utilize this data for geometric reasoning of scenes. While many RGB-D registration meth- ods rely on geometric and feature-based similarity, we take a different approach. We use cycle-consistent keypoints as salient points to enforce spatial coherence constraints during matching, improving correspondence accuracy. Additionally, we introduce a novel pose block that combines a GRU recurrent unit with transformation synchronization, blending historical and multi-view data. Our approach surpasses previous self- supervised registration methods on ScanNet and 3DMatch, even outperforming some older supervised methods. We also integrate our components into existing methods, showing their effectiveness.
Abstract:Segment matching is an important intermediate task in computer vision that establishes correspondences between semantically or geometrically coherent regions across images. Unlike keypoint matching, which focuses on localized features, segment matching captures structured regions, offering greater robustness to occlusions, lighting variations, and viewpoint changes. In this paper, we leverage the spatial understanding of 3D foundation models to tackle wide-baseline segment matching, a challenging setting involving extreme viewpoint shifts. We propose an architecture that uses the inductive bias of these 3D foundation models to match segments across image pairs with up to 180 degree view-point change. Extensive experiments show that our approach outperforms state-of-the-art methods, including the SAM2 video propagator and local feature matching methods, by upto 30% on the AUPRC metric, on ScanNet++ and Replica datasets. We further demonstrate benefits of the proposed model on relevant downstream tasks, including 3D instance segmentation and image-goal navigation. Project Page: https://segmast3r.github.io/
Abstract:Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.
Abstract:Medical Vision-Language Models (Med-VLMs) have demonstrated remarkable performance across diverse medical imaging tasks by leveraging large-scale image-text pretraining. However, their confidence calibration is largely unexplored, and so remains a significant challenge. As such, miscalibrated predictions can lead to overconfident errors, undermining clinical trust and decision-making reliability. To address this, we introduce CalibPrompt, the first framework to calibrate Med-VLMs during prompt tuning. CalibPrompt optimizes a small set of learnable prompts with carefully designed calibration objectives under scarce labeled data regime. First, we study a regularizer that attempts to align the smoothed accuracy with the predicted model confidences. Second, we introduce an angular separation loss to maximize textual feature proximity toward improving the reliability in confidence estimates of multimodal Med-VLMs. Extensive experiments on four publicly available Med-VLMs and five diverse medical imaging datasets reveal that CalibPrompt consistently improves calibration without drastically affecting clean accuracy. Our code is available at https://github.com/iabh1shekbasu/CalibPrompt.
Abstract:Effective waste sorting is critical for sustainable recycling, yet AI research in this domain continues to lag behind commercial systems due to limited datasets and reliance on legacy object detectors. In this work, we advance AI-driven waste detection by establishing strong baselines and introducing an ensemble-based semi-supervised learning framework. We first benchmark state-of-the-art Open-Vocabulary Object Detection (OVOD) models on the real-world ZeroWaste dataset, demonstrating that while class-only prompts perform poorly, LLM-optimized prompts significantly enhance zero-shot accuracy. Next, to address domain-specific limitations, we fine-tune modern transformer-based detectors, achieving a new baseline of 51.6 mAP. We then propose a soft pseudo-labeling strategy that fuses ensemble predictions using spatial and consensus-aware weighting, enabling robust semi-supervised training. Applied to the unlabeled ZeroWaste-s subset, our pseudo-annotations achieve performance gains that surpass fully supervised training, underscoring the effectiveness of scalable annotation pipelines. Our work contributes to the research community by establishing rigorous baselines, introducing a robust ensemble-based pseudo-labeling pipeline, generating high-quality annotations for the unlabeled ZeroWaste-s subset, and systematically evaluating OVOD models under real-world waste sorting conditions. Our code is available at: https://github.com/h-abid97/robust-waste-detection.
Abstract:Segmentation in dense visual scenes poses significant challenges due to occlusions, background clutter, and scale variations. To address this, we introduce PerSense, an end-to-end, training-free, and model-agnostic one-shot framework for Personalized instance Segmentation in dense images. PerSense employs a novel Instance Detection Module (IDM) that leverages density maps (DMs) to generate instance-level candidate point prompts, followed by a Point Prompt Selection Module (PPSM) that filters false positives via adaptive thresholding and spatial gating. A feedback mechanism further enhances segmentation by automatically selecting effective exemplars to improve DM quality. We additionally present PerSense++, an enhanced variant that incorporates three additional components to improve robustness in cluttered scenes: (i) a diversity-aware exemplar selection strategy that leverages feature and scale diversity for better DM generation; (ii) a hybrid IDM combining contour and peak-based prompt generation for improved instance separation within complex density patterns; and (iii) an Irrelevant Mask Rejection Module (IMRM) that discards spatially inconsistent masks using outlier analysis. Finally, to support this underexplored task, we introduce PerSense-D, a dedicated benchmark for personalized segmentation in dense images. Extensive experiments across multiple benchmarks demonstrate that PerSense++ outperforms existing methods in dense settings.
Abstract:The rapid surge of text-to-speech and face-voice reenactment models makes video fabrication easier and highly realistic. To encounter this problem, we require datasets that rich in type of generation methods and perturbation strategy which is usually common for online videos. To this end, we propose AV-Deepfake1M++, an extension of the AV-Deepfake1M having 2 million video clips with diversified manipulation strategy and audio-visual perturbation. This paper includes the description of data generation strategies along with benchmarking of AV-Deepfake1M++ using state-of-the-art methods. We believe that this dataset will play a pivotal role in facilitating research in Deepfake domain. Based on this dataset, we host the 2025 1M-Deepfakes Detection Challenge. The challenge details, dataset and evaluation scripts are available online under a research-only license at https://deepfakes1m.github.io/2025.
Abstract:Despite significant advances in inference-time search for vision-language models (VLMs), existing approaches remain both computationally expensive and prone to unpenalized, low-confidence generations which often lead to persistent hallucinations. We introduce \textbf{Value-guided Inference with Margin-based Reward (ViMaR)}, a two-stage inference framework that improves both efficiency and output fidelity by combining a temporal-difference value model with a margin-aware reward adjustment. In the first stage, we perform a single pass to identify the highest-value caption among diverse candidates. In the second stage, we selectively refine only those segments that were overlooked or exhibit weak visual grounding, thereby eliminating frequently rewarded evaluations. A calibrated margin-based penalty discourages low-confidence continuations while preserving descriptive richness. Extensive experiments across multiple VLM architectures demonstrate that ViMaR generates captions that are significantly more reliable, factually accurate, detailed, and explanatory, while achieving over 4$\times$ speedup compared to existing value-guided methods. Specifically, we show that ViMaR trained solely on LLaVA Mistral-7B, \textit{generalizes effectively to guide decoding in a stronger unseen model}. To further validate this, we adapt the ViMaR to steer generation in LLaVA-OneVision-Qwen2-7B, leading to consistent improvements in caption quality and demonstrating robust cross-model guidance. This cross-model generalization highlights ViMaR's flexibility and modularity, positioning it as a scalable and transferable inference-time decoding strategy. Furthermore, when ViMaR-generated captions are used for self-training, the underlying models achieve substantial gains across a broad suite of visual comprehension benchmarks, underscoring the potential of fast, accurate, and self-improving VLM pipelines.
Abstract:Modern Earth observation (EO) increasingly leverages deep learning to harness the scale and diversity of satellite imagery across sensors and regions. While recent foundation models have demonstrated promising generalization across EO tasks, many remain limited by the scale, geographical coverage, and spectral diversity of their training data, factors critical for learning globally transferable representations. In this work, we introduce TerraFM, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery, combined with large spatial tiles and land-cover aware sampling to enrich spatial and semantic coverage. By treating sensing modalities as natural augmentations in our self-supervised approach, we unify radar and optical inputs via modality-specific patch embeddings and adaptive cross-attention fusion. Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism that incorporates class-frequency-aware regularization to address long-tailed distributions in land cover.TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench. Our code and pretrained models are publicly available at: https://github.com/mbzuai-oryx/TerraFM .