Abstract:Compositional Zero-Shot Learning (CZSL) aims to predict unknown compositions made up of attribute and object pairs. Predicting compositions unseen during training is a challenging task. We are exploring Open World Compositional Zero-Shot Learning (OW-CZSL) in this study, where our test space encompasses all potential combinations of attributes and objects. Our approach involves utilizing the self-attention mechanism between attributes and objects to achieve better generalization from seen to unseen compositions. Utilizing a self-attention mechanism facilitates the model's ability to identify relationships between attribute and objects. The similarity between the self-attended textual and visual features is subsequently calculated to generate predictions during the inference phase. The potential test space may encompass implausible object-attribute combinations arising from unrestricted attribute-object pairings. To mitigate this issue, we leverage external knowledge from ConceptNet to restrict the test space to realistic compositions. Our proposed model, Attention-based Simple Primitives (ASP), demonstrates competitive performance, achieving results comparable to the state-of-the-art.
Abstract:In recent years, numerous domain adaptive strategies have been proposed to help deep learning models overcome the challenges posed by domain shift. However, even unsupervised domain adaptive strategies still require a large amount of target data. Medical imaging datasets are often characterized by class imbalance and scarcity of labeled and unlabeled data. Few-shot domain adaptive object detection (FSDAOD) addresses the challenge of adapting object detectors to target domains with limited labeled data. Existing works struggle with randomly selected target domain images that may not accurately represent the real population, resulting in overfitting to small validation sets and poor generalization to larger test sets. Medical datasets exhibit high class imbalance and background similarity, leading to increased false positives and lower mean Average Precision (map) in target domains. To overcome these challenges, we propose a novel FSDAOD strategy for microscopic imaging. Our contributions include a domain adaptive class balancing strategy for few-shot scenarios, multi-layer instance-level inter and intra-domain alignment to enhance similarity between class instances regardless of domain, and an instance-level classification loss applied in the middle layers of the object detector to enforce feature retention necessary for correct classification across domains. Extensive experimental results with competitive baselines demonstrate the effectiveness of our approach, achieving state-of-the-art results on two public microscopic datasets. Code available at https://github.co/intelligentMachinesLab/few-shot-domain-adaptive-microscopy
Abstract:In this work, we tackle the problem of domain generalization for object detection, specifically focusing on the scenario where only a single source domain is available. We propose an effective approach that involves two key steps: diversifying the source domain and aligning detections based on class prediction confidence and localization. Firstly, we demonstrate that by carefully selecting a set of augmentations, a base detector can outperform existing methods for single domain generalization by a good margin. This highlights the importance of domain diversification in improving the performance of object detectors. Secondly, we introduce a method to align detections from multiple views, considering both classification and localization outputs. This alignment procedure leads to better generalized and well-calibrated object detector models, which are crucial for accurate decision-making in safety-critical applications. Our approach is detector-agnostic and can be seamlessly applied to both single-stage and two-stage detectors. To validate the effectiveness of our proposed methods, we conduct extensive experiments and ablations on challenging domain-shift scenarios. The results consistently demonstrate the superiority of our approach compared to existing methods. Our code and models are available at: https://github.com/msohaildanish/DivAlign
Abstract:Earlier diagnosis of Leukemia can save thousands of lives annually. The prognosis of leukemia is challenging without the morphological information of White Blood Cells (WBC) and relies on the accessibility of expensive microscopes and the availability of hematologists to analyze Peripheral Blood Samples (PBS). Deep Learning based methods can be employed to assist hematologists. However, these algorithms require a large amount of labeled data, which is not readily available. To overcome this limitation, we have acquired a realistic, generalized, and large dataset. To collect this comprehensive dataset for real-world applications, two microscopes from two different cost spectrums (high-cost HCM and low-cost LCM) are used for dataset capturing at three magnifications (100x, 40x, 10x) through different sensors (high-end camera for HCM, middle-level camera for LCM and mobile-phone camera for both). The high-sensor camera is 47 times more expensive than the middle-level camera and HCM is 17 times more expensive than LCM. In this collection, using HCM at high resolution (100x), experienced hematologists annotated 10.3k WBC types (14) and artifacts, having 55k morphological labels (Cell Size, Nuclear Chromatin, Nuclear Shape, etc.) from 2.4k images of several PBS leukemia patients. Later on, these annotations are transferred to other 2 magnifications of HCM, and 3 magnifications of LCM, and on each camera captured images. Along with the LeukemiaAttri dataset, we provide baselines over multiple object detectors and Unsupervised Domain Adaptation (UDA) strategies, along with morphological information-based attribute prediction. The dataset will be publicly available after publication to facilitate the research in this direction.
Abstract:Deep learning based object detectors struggle generalizing to a new target domain bearing significant variations in object and background. Most current methods align domains by using image or instance-level adversarial feature alignment. This often suffers due to unwanted background and lacks class-specific alignment. A straightforward approach to promote class-level alignment is to use high confidence predictions on unlabeled domain as pseudo-labels. These predictions are often noisy since model is poorly calibrated under domain shift. In this paper, we propose to leverage model's predictive uncertainty to strike the right balance between adversarial feature alignment and class-level alignment. We develop a technique to quantify predictive uncertainty on class assignments and bounding-box predictions. Model predictions with low uncertainty are used to generate pseudo-labels for self-training, whereas the ones with higher uncertainty are used to generate tiles for adversarial feature alignment. This synergy between tiling around uncertain object regions and generating pseudo-labels from highly certain object regions allows capturing both image and instance-level context during the model adaptation. We report thorough ablation study to reveal the impact of different components in our approach. Results on five diverse and challenging adaptation scenarios show that our approach outperforms existing state-of-the-art methods with noticeable margins.
Abstract:Albeit revealing impressive predictive performance for several computer vision tasks, deep neural networks (DNNs) are prone to making overconfident predictions. This limits the adoption and wider utilization of DNNs in many safety-critical applications. There have been recent efforts toward calibrating DNNs, however, almost all of them focus on the classification task. Surprisingly, very little attention has been devoted to calibrating modern DNN-based object detectors, especially detection transformers, which have recently demonstrated promising detection performance and are influential in many decision-making systems. In this work, we address the problem by proposing a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO. We pursue the train-time calibration route and make the following contributions. First, we propose a simple yet effective approach for quantifying uncertainty in transformer-based object detectors. Second, we develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits. Third, we develop a logit mixing approach that acts as a regularizer with detection-specific losses and is also complementary to the uncertainty-guided logit modulation technique to further improve the calibration performance. Lastly, we conduct extensive experiments across three in-domain and four out-domain scenarios. Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections while maintaining or even improving the detection performance. Our codebase and pre-trained models can be accessed at \url{https://github.com/akhtarvision/cal-detr}.
Abstract:Getting precise aspects of road through segmentation from remote sensing imagery is useful for many real-world applications such as autonomous vehicles, urban development and planning, and achieving sustainable development goals. Roads are only a small part of the image, and their appearance, type, width, elevation, directions, etc. exhibit large variations across geographical areas. Furthermore, due to differences in urbanization styles, planning, and the natural environments; regions along the roads vary significantly. Due to these variations among the train and test domains, the road segmentation algorithms fail to generalize to new geographical locations. Unlike the generic domain alignment scenarios, road segmentation has no scene structure, and generic domain adaptation methods are unable to enforce topological properties like continuity, connectivity, smoothness, etc., thus resulting in degraded domain alignment. In this work, we propose a topology-aware unsupervised domain adaptation approach for road segmentation in remote sensing imagery. Specifically, we predict road skeleton, an auxiliary task to impose the topological constraints. To enforce consistent predictions of road and skeleton, especially in the unlabeled target domain, the conformity loss is defined across the skeleton prediction head and the road-segmentation head. Furthermore, for self-training, we filter out the noisy pseudo-labels by using a connectivity-based pseudo-labels refinement strategy, on both road and skeleton segmentation heads, thus avoiding holes and discontinuities. Extensive experiments on the benchmark datasets show the effectiveness of the proposed approach compared to existing state-of-the-art methods. Specifically, for SpaceNet to DeepGlobe adaptation, the proposed approach outperforms the competing methods by a minimum margin of 6.6%, 6.7%, and 9.8% in IoU, F1-score, and APLS, respectively.
Abstract:Detecting firearms and accurately localizing individuals carrying them in images or videos is of paramount importance in security, surveillance, and content customization. However, this task presents significant challenges in complex environments due to clutter and the diverse shapes of firearms. To address this problem, we propose a novel approach that leverages human-firearm interaction information, which provides valuable clues for localizing firearm carriers. Our approach incorporates an attention mechanism that effectively distinguishes humans and firearms from the background by focusing on relevant areas. Additionally, we introduce a saliency-driven locality-preserving constraint to learn essential features while preserving foreground information in the input image. By combining these components, our approach achieves exceptional results on a newly proposed dataset. To handle inputs of varying sizes, we pass paired human-firearm instances with attention masks as channels through a deep network for feature computation, utilizing an adaptive average pooling layer. We extensively evaluate our approach against existing methods in human-object interaction detection and achieve significant results (AP=77.8\%) compared to the baseline approach (AP=63.1\%). This demonstrates the effectiveness of leveraging attention mechanisms and saliency-driven locality preservation for accurate human-firearm interaction detection. Our findings contribute to advancing the fields of security and surveillance, enabling more efficient firearm localization and identification in diverse scenarios.
Abstract:The increasing use of deep neural networks in safety-critical applications requires the trained models to be well-calibrated. Most current calibration techniques address classification problems while focusing on improving calibration on in-domain predictions. Little to no attention is paid towards addressing calibration of visual object detectors which occupy similar space and importance in many decision making systems. In this paper, we study the calibration of current object detection models, particularly under domain shift. To this end, we first introduce a plug-and-play train-time calibration loss for object detection. It can be used as an auxiliary loss function to improve detector's calibration. Second, we devise a new uncertainty quantification mechanism for object detection which can implicitly calibrate the commonly used self-training based domain adaptive detectors. We include in our study both single-stage and two-stage object detectors. We demonstrate that our loss improves calibration for both in-domain and out-of-domain detections with notable margins. Finally, we show the utility of our techniques in calibrating the domain adaptive object detectors in diverse domain shift scenarios.
Abstract:This paper proposes a novel pixel-level distribution regularization scheme (DRSL) for self-supervised domain adaptation of semantic segmentation. In a typical setting, the classification loss forces the semantic segmentation model to greedily learn the representations that capture inter-class variations in order to determine the decision (class) boundary. Due to the domain shift, this decision boundary is unaligned in the target domain, resulting in noisy pseudo labels adversely affecting self-supervised domain adaptation. To overcome this limitation, along with capturing inter-class variation, we capture pixel-level intra-class variations through class-aware multi-modal distribution learning (MMDL). Thus, the information necessary for capturing the intra-class variations is explicitly disentangled from the information necessary for inter-class discrimination. Features captured thus are much more informative, resulting in pseudo-labels with low noise. This disentanglement allows us to perform separate alignments in discriminative space and multi-modal distribution space, using cross-entropy based self-learning for the former. For later, we propose a novel stochastic mode alignment method, by explicitly decreasing the distance between the target and source pixels that map to the same mode. The distance metric learning loss, computed over pseudo-labels and backpropagated from multi-modal modeling head, acts as the regularizer over the base network shared with the segmentation head. The results from comprehensive experiments on synthetic to real domain adaptation setups, i.e., GTA-V/SYNTHIA to Cityscapes, show that DRSL outperforms many existing approaches (a minimum margin of 2.3% and 2.5% in mIoU for SYNTHIA to Cityscapes).