Abstract:Vision-based semantic occupancy and flow prediction plays a crucial role in providing spatiotemporal cues for real-world tasks, such as autonomous driving. Existing methods prioritize higher accuracy to cater to the demands of these tasks. In this work, we strive to improve performance by introducing a series of targeted improvements for 3D semantic occupancy prediction and flow estimation. First, we introduce an occlusion-aware adaptive lifting mechanism with a depth denoising technique to improve the robustness of 2D-to-3D feature transformation and reduce the reliance on depth priors. Second, we strengthen the semantic consistency between 3D features and their original 2D modalities by utilizing shared semantic prototypes to jointly constrain both 2D and 3D features. This is complemented by confidence- and category-based sampling strategies to tackle long-tail challenges in 3D space. To alleviate the feature encoding burden in the joint prediction of semantics and flow, we propose a BEV cost volume-based prediction method that links flow and semantic features through a cost volume and employs a classification-regression supervision scheme to address the varying flow scales in dynamic scenes. Our purely convolutional architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy achieving state-of-the-art results on multiple benchmarks. On Occ3D and training without the camera visible mask, our ALOcc achieves an absolute gain of 2.5\% in terms of RayIoU while operating at a comparable speed compared to the state-of-the-art, using the same input size (256$\times$704) and ResNet-50 backbone. Our method also achieves 2nd place in the CVPR24 Occupancy and Flow Prediction Competition.
Abstract:Although text-to-image (T2I) models exhibit remarkable generation capabilities, they frequently fail to accurately bind semantically related objects or attributes in the input prompts; a challenge termed semantic binding. Previous approaches either involve intensive fine-tuning of the entire T2I model or require users or large language models to specify generation layouts, adding complexity. In this paper, we define semantic binding as the task of associating a given object with its attribute, termed attribute binding, or linking it to other related sub-objects, referred to as object binding. We introduce a novel method called Token Merging (ToMe), which enhances semantic binding by aggregating relevant tokens into a single composite token. This ensures that the object, its attributes and sub-objects all share the same cross-attention map. Additionally, to address potential confusion among main objects with complex textual prompts, we propose end token substitution as a complementary strategy. To further refine our approach in the initial stages of T2I generation, where layouts are determined, we incorporate two auxiliary losses, an entropy loss and a semantic binding loss, to iteratively update the composite token to improve the generation integrity. We conducted extensive experiments to validate the effectiveness of ToMe, comparing it against various existing methods on the T2I-CompBench and our proposed GPT-4o object binding benchmark. Our method is particularly effective in complex scenarios that involve multiple objects and attributes, which previous methods often fail to address. The code will be publicly available at \url{https://github.com/hutaihang/ToMe}.
Abstract:Fine-grained alignment between videos and text is challenging due to complex spatial and temporal dynamics in videos. Existing video-based Large Multimodal Models (LMMs) handle basic conversations but struggle with precise pixel-level grounding in videos. To address this, we introduce VideoGLaMM, a LMM designed for fine-grained pixel-level grounding in videos based on user-provided textual inputs. Our design seamlessly connects three key components: a Large Language Model, a dual vision encoder that emphasizes both spatial and temporal details, and a spatio-temporal decoder for accurate mask generation. This connection is facilitated via tunable V-L and L-V adapters that enable close Vision-Language (VL) alignment. The architecture is trained to synchronize both spatial and temporal elements of video content with textual instructions. To enable fine-grained grounding, we curate a multimodal dataset featuring detailed visually-grounded conversations using a semiautomatic annotation pipeline, resulting in a diverse set of 38k video-QA triplets along with 83k objects and 671k masks. We evaluate VideoGLaMM on three challenging tasks: Grounded Conversation Generation, Visual Grounding, and Referring Video Segmentation. Experimental results show that our model consistently outperforms existing approaches across all three tasks.
Abstract:Custom diffusion models (CDMs) have attracted widespread attention due to their astonishing generative ability for personalized concepts. However, most existing CDMs unreasonably assume that personalized concepts are fixed and cannot change over time. Moreover, they heavily suffer from catastrophic forgetting and concept neglect on old personalized concepts when continually learning a series of new concepts. To address these challenges, we propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM), which can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner. Specifically, to surmount the catastrophic forgetting of old concepts, we develop a concept consolidation loss and an elastic weight aggregation module. They can explore task-specific and task-shared knowledge during training, and aggregate all low-rank weights of old concepts based on their contributions during inference. Moreover, in order to address concept neglect, we devise a context-controllable synthesis strategy that leverages expressive region features and noise estimation to control the contexts of generated images according to user conditions. Experiments validate that our CIDM surpasses existing custom diffusion models. The source codes are available at https://github.com/JiahuaDong/CIFC.
Abstract:Colonoscopy is currently one of the most sensitive screening methods for colorectal cancer. This study investigates the frontiers of intelligent colonoscopy techniques and their prospective implications for multimodal medical applications. With this goal, we begin by assessing the current data-centric and model-centric landscapes through four tasks for colonoscopic scene perception, including classification, detection, segmentation, and vision-language understanding. This assessment enables us to identify domain-specific challenges and reveals that multimodal research in colonoscopy remains open for further exploration. To embrace the coming multimodal era, we establish three foundational initiatives: a large-scale multimodal instruction tuning dataset ColonINST, a colonoscopy-designed multimodal language model ColonGPT, and a multimodal benchmark. To facilitate ongoing monitoring of this rapidly evolving field, we provide a public website for the latest updates: https://github.com/ai4colonoscopy/IntelliScope.
Abstract:Recently, the Segment Anything Model (SAM) has demonstrated promising segmentation capabilities in a variety of downstream segmentation tasks. However in the context of universal medical image segmentation there exists a notable performance discrepancy when directly applying SAM due to the domain gap between natural and 2D/3D medical data. In this work, we propose a dual-branch adapted SAM framework, named DB-SAM, that strives to effectively bridge this domain gap. Our dual-branch adapted SAM contains two branches in parallel: a ViT branch and a convolution branch. The ViT branch incorporates a learnable channel attention block after each frozen attention block, which captures domain-specific local features. On the other hand, the convolution branch employs a light-weight convolutional block to extract domain-specific shallow features from the input medical image. To perform cross-branch feature fusion, we design a bilateral cross-attention block and a ViT convolution fusion block, which dynamically combine diverse information of two branches for mask decoder. Extensive experiments on large-scale medical image dataset with various 3D and 2D medical segmentation tasks reveal the merits of our proposed contributions. On 21 3D medical image segmentation tasks, our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature. The code and model are available at https://github.com/AlfredQin/DB-SAM.
Abstract:3D multi-object tracking plays a critical role in autonomous driving by enabling the real-time monitoring and prediction of multiple objects' movements. Traditional 3D tracking systems are typically constrained by predefined object categories, limiting their adaptability to novel, unseen objects in dynamic environments. To address this limitation, we introduce open-vocabulary 3D tracking, which extends the scope of 3D tracking to include objects beyond predefined categories. We formulate the problem of open-vocabulary 3D tracking and introduce dataset splits designed to represent various open-vocabulary scenarios. We propose a novel approach that integrates open-vocabulary capabilities into a 3D tracking framework, allowing for generalization to unseen object classes. Our method effectively reduces the performance gap between tracking known and novel objects through strategic adaptation. Experimental results demonstrate the robustness and adaptability of our method in diverse outdoor driving scenarios. To the best of our knowledge, this work is the first to address open-vocabulary 3D tracking, presenting a significant advancement for autonomous systems in real-world settings. Code, trained models, and dataset splits are available publicly.
Abstract:Large multimodal models (LMMs) have shown encouraging performance in the natural image domain using visual instruction tuning. However, these LMMs struggle to describe the content of remote sensing images for tasks such as image or region grounding, classification, etc. Recently, GeoChat make an effort to describe the contents of the RS images. Although, GeoChat achieves promising performance for various RS tasks, it struggles to describe the changes between bi-temporal RS images which is a key RS task. This necessitates the development of an LMM that can describe the changes between the bi-temporal RS images. However, there is insufficiency of datasets that can be utilized to tune LMMs. In order to achieve this, we introduce a change description instruction dataset that can be utilized to finetune an LMM and provide better change descriptions for RS images. Furthermore, we show that the LLaVA-1.5 model, with slight modifications, can be finetuned on the change description instruction dataset and achieve favorably better performance.
Abstract:Accurate weather and climate modeling is critical for both scientific advancement and safeguarding communities against environmental risks. Traditional approaches rely heavily on Numerical Weather Prediction (NWP) models, which simulate energy and matter flow across Earth's systems. However, heavy computational requirements and low efficiency restrict the suitability of NWP, leading to a pressing need for enhanced modeling techniques. Neural network-based models have emerged as promising alternatives, leveraging data-driven approaches to forecast atmospheric variables. In this work, we focus on limited-area modeling and train our model specifically for localized region-level downstream tasks. As a case study, we consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events. This targeted approach allows us to tailor the model's capabilities to the unique conditions of the region of interest. Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
Abstract:Stable diffusion has demonstrated strong image synthesis ability to given text descriptions, suggesting it to contain strong semantic clue for grouping objects. Inspired by this, researchers have explored employing stable diffusion for trainingfree segmentation. Most existing approaches either simply employ cross-attention map or refine it by self-attention map, to generate segmentation masks. We believe that iterative refinement with self-attention map would lead to better results. However, we mpirically demonstrate that such a refinement is sub-optimal likely due to the self-attention map containing irrelevant global information which hampers accurately refining cross-attention map with multiple iterations. To address this, we propose an iterative refinement framework for training-free segmentation, named iSeg, having an entropy-reduced self-attention module which utilizes a gradient descent scheme to reduce the entropy of self-attention map, thereby suppressing the weak responses corresponding to irrelevant global information. Leveraging the entropy-reduced self-attention module, our iSeg stably improves refined crossattention map with iterative refinement. Further, we design a category-enhanced cross-attention module to generate accurate cross-attention map, providing a better initial input for iterative refinement. Extensive experiments across different datasets and diverse segmentation tasks reveal the merits of proposed contributions, leading to promising performance on diverse segmentation tasks. For unsupervised semantic segmentation on Cityscapes, our iSeg achieves an absolute gain of 3.8% in terms of mIoU compared to the best existing training-free approach in literature. Moreover, our proposed iSeg can support segmentation with different kind of images and interactions.