Abstract:Reasoning is a fundamental capability for solving complex multi-step problems, particularly in visual contexts where sequential step-wise understanding is essential. Existing approaches lack a comprehensive framework for evaluating visual reasoning and do not emphasize step-wise problem-solving. To this end, we propose a comprehensive framework for advancing step-by-step visual reasoning in large language models (LMMs) through three key contributions. First, we introduce a visual reasoning benchmark specifically designed to evaluate multi-step reasoning tasks. The benchmark presents a diverse set of challenges with eight different categories ranging from complex visual perception to scientific reasoning with over 4k reasoning steps in total, enabling robust evaluation of LLMs' abilities to perform accurate and interpretable visual reasoning across multiple steps. Second, we propose a novel metric that assesses visual reasoning quality at the granularity of individual steps, emphasizing both correctness and logical coherence. The proposed metric offers deeper insights into reasoning performance compared to traditional end-task accuracy metrics. Third, we present a new multimodal visual reasoning model, named LlamaV-o1, trained using a multi-step curriculum learning approach, where tasks are progressively organized to facilitate incremental skill acquisition and problem-solving. The proposed LlamaV-o1 is designed for multi-step reasoning and learns step-by-step through a structured training paradigm. Extensive experiments show that our LlamaV-o1 outperforms existing open-source models and performs favorably against close-source proprietary models. Compared to the recent Llava-CoT, our LlamaV-o1 achieves an average score of 67.3 with an absolute gain of 3.8\% across six benchmarks while being 5 times faster during inference scaling. Our benchmark, model, and code are publicly available.
Abstract:Recent years have witnessed a significant interest in developing large multimodal models (LMMs) capable of performing various visual reasoning and understanding tasks. This has led to the introduction of multiple LMM benchmarks to evaluate LMMs on different tasks. However, most existing LMM evaluation benchmarks are predominantly English-centric. In this work, we develop a comprehensive LMM evaluation benchmark for the Arabic language to represent a large population of over 400 million speakers. The proposed benchmark, named CAMEL-Bench, comprises eight diverse domains and 38 sub-domains including, multi-image understanding, complex visual perception, handwritten document understanding, video understanding, medical imaging, plant diseases, and remote sensing-based land use understanding to evaluate broad scenario generalizability. Our CAMEL-Bench comprises around 29,036 questions that are filtered from a larger pool of samples, where the quality is manually verified by native speakers to ensure reliable model assessment. We conduct evaluations of both closed-source, including GPT-4 series, and open-source LMMs. Our analysis reveals the need for substantial improvement, especially among the best open-source models, with even the closed-source GPT-4o achieving an overall score of 62%. Our benchmark and evaluation scripts are open-sourced.
Abstract:Traditional fish farming practices often lead to inefficient feeding, resulting in environmental issues and reduced productivity. We developed an innovative system combining computer vision and IoT technologies for precise Tilapia feeding. Our solution uses real-time IoT sensors to monitor water quality parameters and computer vision algorithms to analyze fish size and count, determining optimal feed amounts. A mobile app enables remote monitoring and control. We utilized YOLOv8 for keypoint detection to measure Tilapia weight from length, achieving \textbf{94\%} precision on 3,500 annotated images. Pixel-based measurements were converted to centimeters using depth estimation for accurate feeding calculations. Our method, with data collection mirroring inference conditions, significantly improved results. Preliminary estimates suggest this approach could increase production up to 58 times compared to traditional farms. Our models, code, and dataset are open-source~\footnote{The code, dataset, and models are available upon reasonable request.
Abstract:Motivated by the widespread increase in the phenomenon of code-switching between Egyptian Arabic and English in recent times, this paper explores the intricacies of machine translation (MT) and automatic speech recognition (ASR) systems, focusing on translating code-switched Egyptian Arabic-English to either English or Egyptian Arabic. Our goal is to present the methodologies employed in developing these systems, utilizing large language models such as LLama and Gemma. In the field of ASR, we explore the utilization of the Whisper model for code-switched Egyptian Arabic recognition, detailing our experimental procedures including data preprocessing and training techniques. Through the implementation of a consecutive speech-to-text translation system that integrates ASR with MT, we aim to overcome challenges posed by limited resources and the unique characteristics of the Egyptian Arabic dialect. Evaluation against established metrics showcases promising results, with our methodologies yielding a significant improvement of $56\%$ in English translation over the state-of-the-art and $9.3\%$ in Arabic translation. Since code-switching is deeply inherent in spoken languages, it is crucial that ASR systems can effectively handle this phenomenon. This capability is crucial for enabling seamless interaction in various domains, including business negotiations, cultural exchanges, and academic discourse. Our models and code are available as open-source resources. Code: \url{http://github.com/ahmedheakl/arazn-llm}}, Models: \url{http://huggingface.co/collections/ahmedheakl/arazn-llm-662ceaf12777656607b9524e}.
Abstract:The increasing reliance on online recruitment platforms coupled with the adoption of AI technologies has highlighted the critical need for efficient resume classification methods. However, challenges such as small datasets, lack of standardized resume templates, and privacy concerns hinder the accuracy and effectiveness of existing classification models. In this work, we address these challenges by presenting a comprehensive approach to resume classification. We curated a large-scale dataset of 13,389 resumes from diverse sources and employed Large Language Models (LLMs) such as BERT and Gemma1.1 2B for classification. Our results demonstrate significant improvements over traditional machine learning approaches, with our best model achieving a top-1 accuracy of 92\% and a top-5 accuracy of 97.5\%. These findings underscore the importance of dataset quality and advanced model architectures in enhancing the accuracy and robustness of resume classification systems, thus advancing the field of online recruitment practices.
Abstract:This paper introduces DroneVis, a novel library designed to automate computer vision algorithms on Parrot drones. DroneVis offers a versatile set of features and provides a diverse range of computer vision tasks along with a variety of models to choose from. Implemented in Python, the library adheres to high-quality code standards, facilitating effortless customization and feature expansion according to user requirements. In addition, comprehensive documentation is provided, encompassing usage guidelines and illustrative use cases. Our documentation, code, and examples are available in https://github.com/ahmedheakl/drone-vis.
Abstract:This study thoroughly investigates how well deep learning models can recognize Arabic handwritten text for person biometric identification. It compares three advanced architectures -- ResNet50, MobileNetV2, and EfficientNetB7 -- using three widely recognized datasets: AHAWP, Khatt, and LAMIS-MSHD. Results show that EfficientNetB7 outperforms the others, achieving test accuracies of 98.57\%, 99.15\%, and 99.79\% on AHAWP, Khatt, and LAMIS-MSHD datasets, respectively. EfficientNetB7's exceptional performance is credited to its innovative techniques, including compound scaling, depth-wise separable convolutions, and squeeze-and-excitation blocks. These features allow the model to extract more abstract and distinctive features from handwritten text images. The study's findings hold significant implications for enhancing identity verification and authentication systems, highlighting the potential of deep learning in Arabic handwritten text recognition for person biometric identification.
Abstract:Biometric identification is a reliable method to verify individuals based on their unique physical or behavioral traits, offering a secure alternative to traditional methods like passwords or PINs. This study focuses on ear biometric identification, exploiting its distinctive features for enhanced accuracy, reliability, and usability. While past studies typically investigate face recognition and fingerprint analysis, our research demonstrates the effectiveness of ear biometrics in overcoming limitations such as variations in facial expressions and lighting conditions. We utilized two datasets: AMI (700 images from 100 individuals) and EarNV1.0 (28,412 images from 164 individuals). To improve the accuracy and robustness of our ear biometric identification system, we applied various techniques including data preprocessing and augmentation. Our models achieved a testing accuracy of 99.35% on the AMI Dataset and 98.1% on the EarNV1.0 dataset, showcasing the effectiveness of our approach in precisely identifying individuals based on ear biometric characteristics.
Abstract:This study presents AraSpider, the first Arabic version of the Spider dataset, aimed at improving natural language processing (NLP) in the Arabic-speaking community. Four multilingual translation models were tested for their effectiveness in translating English to Arabic. Additionally, two models were assessed for their ability to generate SQL queries from Arabic text. The results showed that using back translation significantly improved the performance of both ChatGPT 3.5 and SQLCoder models, which are considered top performers on the Spider dataset. Notably, ChatGPT 3.5 demonstrated high-quality translation, while SQLCoder excelled in text-to-SQL tasks. The study underscores the importance of incorporating contextual schema and employing back translation strategies to enhance model performance in Arabic NLP tasks. Moreover, the provision of detailed methodologies for reproducibility and translation of the dataset into other languages highlights the research's commitment to promoting transparency and collaborative knowledge sharing in the field. Overall, these contributions advance NLP research, empower Arabic-speaking researchers, and enrich the global discourse on language comprehension and database interrogation.
Abstract:Due to the increased demand for music streaming/recommender services and the recent developments of music information retrieval frameworks, Music Genre Classification (MGC) has attracted the community's attention. However, convolutional-based approaches are known to lack the ability to efficiently encode and localize temporal features. In this paper, we study the broadcast-based neural networks aiming to improve the localization and generalizability under a small set of parameters (about 180k) and investigate twelve variants of broadcast networks discussing the effect of block configuration, pooling method, activation function, normalization mechanism, label smoothing, channel interdependency, LSTM block inclusion, and variants of inception schemes. Our computational experiments using relevant datasets such as GTZAN, Extended Ballroom, HOMBURG, and Free Music Archive (FMA) show state-of-the-art classification accuracies in Music Genre Classification. Our approach offers insights and the potential to enable compact and generalizable broadcast networks for music and audio classification.