Abstract:Google Translate has been prominent for language translation; however, limited work has been done in evaluating the quality of translation when compared to human experts. Sanskrit one of the oldest written languages in the world. In 2022, the Sanskrit language was added to the Google Translate engine. Sanskrit is known as the mother of languages such as Hindi and an ancient source of the Indo-European group of languages. Sanskrit is the original language for sacred Hindu texts such as the Bhagavad Gita. In this study, we present a framework that evaluates the Google Translate for Sanskrit using the Bhagavad Gita. We first publish a translation of the Bhagavad Gita in Sanskrit using Google Translate. Our framework then compares Google Translate version of Bhagavad Gita with expert translations using sentiment and semantic analysis via BERT-based language models. Our results indicate that in terms of sentiment and semantic analysis, there is low level of similarity in selected verses of Google Translate when compared to expert translations. In the qualitative evaluation, we find that Google translate is unsuitable for translation of certain Sanskrit words and phrases due to its poetic nature, contextual significance, metaphor and imagery. The mistranslations are not surprising since the Bhagavad Gita is known as a difficult text not only to translate, but also to interpret since it relies on contextual, philosophical and historical information. Our framework lays the foundation for automatic evaluation of other languages by Google Translate
Abstract:A distinct feature of Hindu religious and philosophical text is that they come from a library of texts rather than single source. The Upanishads is known as one of the oldest philosophical texts in the world that forms the foundation of Hindu philosophy. The Bhagavad Gita is core text of Hindu philosophy and is known as a text that summarises the key philosophies of the Upanishads with major focus on the philosophy of karma. These texts have been translated into many languages and there exists studies about themes and topics that are prominent; however, there is not much study of topic modelling using language models which are powered by deep learning. In this paper, we use advanced language produces such as BERT to provide topic modelling of the key texts of the Upanishads and the Bhagavad Gita. We analyse the distinct and overlapping topics amongst the texts and visualise the link of selected texts of the Upanishads with Bhagavad Gita. Our results show a very high similarity between the topics of these two texts with the mean cosine similarity of 73%. We find that out of the fourteen topics extracted from the Bhagavad Gita, nine of them have a cosine similarity of more than 70% with the topics of the Upanishads. We also found that topics generated by the BERT-based models show very high coherence as compared to that of conventional models. Our best performing model gives a coherence score of 73% on the Bhagavad Gita and 69% on The Upanishads. The visualization of the low dimensional embeddings of these texts shows very clear overlapping among their topics adding another level of validation to our results.
Abstract:A stroke occurs when an artery in the brain ruptures and bleeds or when the blood supply to the brain is cut off. Blood and oxygen cannot reach the brain's tissues due to the rupture or obstruction resulting in tissue death. The Middle cerebral artery (MCA) is the largest cerebral artery and the most commonly damaged vessel in stroke. The quick onset of a focused neurological deficit caused by interruption of blood flow in the territory supplied by the MCA is known as an MCA stroke. Alberta stroke programme early CT score (ASPECTS) is used to estimate the extent of early ischemic changes in patients with MCA stroke. This study proposes a deep learning-based method to score the CT scan for ASPECTS. Our work has three highlights. First, we propose a novel method for medical image segmentation for stroke detection. Second, we show the effectiveness of AI solution for fully-automated ASPECT scoring with reduced diagnosis time for a given non-contrast CT (NCCT) Scan. Our algorithms show a dice similarity coefficient of 0.64 for the MCA anatomy segmentation and 0.72 for the infarcts segmentation. Lastly, we show that our model's performance is inline with inter-reader variability between radiologists.