Abstract:Time series data supports many domains (e.g., finance and climate science), but its rapid growth strains storage and computation. Dataset condensation can alleviate this by synthesizing a compact training set that preserves key information. Yet most condensation methods are image-centric and often fail on time series because they miss time-series-specific temporal structure, especially local discriminative motifs such as shapelets. In this work, we propose ShapeCond, a novel and efficient condensation framework for time series classification that leverages shapelet-based dataset knowledge via a shapelet-guided optimization strategy. Our shapelet-assisted synthesis cost is independent of sequence length: longer series yield larger speedups in synthesis (e.g., 29$\times$ faster over prior state-of-the-art method CondTSC for time-series condensation, and up to 10,000$\times$ over naively using shapelets on the Sleep dataset with 3,000 timesteps). By explicitly preserving critical local patterns, ShapeCond improves downstream accuracy and consistently outperforms all prior state-of-the-art time series dataset condensation methods across extensive experiments. Code is available at https://github.com/lunaaa95/ShapeCond.
Abstract:The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.




Abstract:Soft labels generated by teacher models have become a dominant paradigm for knowledge transfer and recent large-scale dataset distillation such as SRe2L, RDED, LPLD, offering richer supervision than conventional hard labels. However, we observe that when only a limited number of crops per image are used, soft labels are prone to local semantic drift: a crop may visually resemble another class, causing its soft embedding to deviate from the ground-truth semantics of the original image. This mismatch between local visual content and global semantic meaning introduces systematic errors and distribution misalignment between training and testing. In this work, we revisit the overlooked role of hard labels and show that, when appropriately integrated, they provide a powerful content-agnostic anchor to calibrate semantic drift. We theoretically characterize the emergence of drift under few soft-label supervision and demonstrate that hybridizing soft and hard labels restores alignment between visual content and semantic supervision. Building on this insight, we propose a new training paradigm, Hard Label for Alleviating Local Semantic Drift (HALD), which leverages hard labels as intermediate corrective signals while retaining the fine-grained advantages of soft labels. Extensive experiments on dataset distillation and large-scale conventional classification benchmarks validate our approach, showing consistent improvements in generalization. On ImageNet-1K, we achieve 42.7% with only 285M storage for soft labels, outperforming prior state-of-the-art LPLD by 9.0%. Our findings re-establish the importance of hard labels as a complementary tool, and call for a rethinking of their role in soft-label-dominated training.
Abstract:Model merging has emerged as an efficient technique for expanding large language models (LLMs) by integrating specialized expert models. However, it also introduces a new threat: model merging stealing, where free-riders exploit models through unauthorized model merging. Unfortunately, existing defense mechanisms fail to provide effective protection. Specifically, we identify three critical protection properties that existing methods fail to simultaneously satisfy: (1) proactively preventing unauthorized merging; (2) ensuring compatibility with general open-source settings; (3) achieving high security with negligible performance loss. To address the above issues, we propose MergeBarrier, a plug-and-play defense that proactively prevents unauthorized merging. The core design of MergeBarrier is to disrupt the Linear Mode Connectivity (LMC) between the protected model and its homologous counterparts, thereby eliminating the low-loss path required for effective model merging. Extensive experiments show that MergeBarrier effectively prevents model merging stealing with negligible accuracy loss.




Abstract:Retrieval-Augmented Generation (RAG) systems deployed over proprietary knowledge bases face growing threats from reconstruction attacks that aggregate model responses to replicate knowledge bases. Such attacks exploit both intra-class and inter-class paths, progressively extracting fine-grained knowledge within topics and diffusing it across semantically related ones, thereby enabling comprehensive extraction of the original knowledge base. However, existing defenses target only one path, leaving the other unprotected. We conduct a systematic exploration to assess the impact of protecting each path independently and find that joint protection is essential for effective defense. Based on this, we propose RAGFort, a structure-aware dual-module defense combining "contrastive reindexing" for inter-class isolation and "constrained cascade generation" for intra-class protection. Experiments across security, performance, and robustness confirm that RAGFort significantly reduces reconstruction success while preserving answer quality, offering comprehensive defense against knowledge base extraction attacks.




Abstract:This work studies how to adaptively recompute key-value (KV) caches for diffusion large language models (DLMs) to maximize prediction accuracy while minimizing decoding latency. Prior methods' decoders recompute QKV for all tokens at every denoising step and layer, despite KV states changing little across most steps, especially in shallow layers, leading to substantial redundancy. We make three observations: (1) distant ${\bf MASK}$ tokens primarily act as a length-bias and can be cached block-wise beyond the active prediction window; (2) KV dynamics increase with depth, suggesting that selective refresh starting from deeper layers is sufficient; and (3) the most-attended token exhibits the smallest KV drift, providing a conservative lower bound on cache change for other tokens. Building on these, we propose ${\bf Elastic-Cache}$, a training-free, architecture-agnostic strategy that jointly decides ${when}$ to refresh (via an attention-aware drift test on the most-attended token) and ${where}$ to refresh (via a depth-aware schedule that recomputes from a chosen layer onward while reusing shallow-layer caches and off-window MASK caches). Unlike fixed-period schemes, Elastic-Cache performs adaptive, layer-aware cache updates for diffusion LLMs, reducing redundant computation and accelerating decoding with negligible loss in generation quality. Experiments on LLaDA-Instruct, LLaDA-1.5, and LLaDA-V across mathematical reasoning and code generation tasks demonstrate consistent speedups: $8.7\times$ on GSM8K (256 tokens), $45.1\times$ on longer sequences, and $4.8\times$ on HumanEval, while consistently maintaining higher accuracy than the baseline. Our method achieves significantly higher throughput ($6.8\times$ on GSM8K) than existing confidence-based approaches while preserving generation quality, enabling practical deployment of diffusion LLMs.
Abstract:Large language models (LLMs) have demonstrated impressive reasoning capabilities when provided with chain-of-thought exemplars, but curating large reasoning datasets remains laborious and resource-intensive. In this work, we introduce Prompting Test-Time Scaling (P-TTS), a simple yet effective inference-time data augmentation strategy for enhancing LLM reasoning through finetuning. Rather than collecting thousands or even millions of examples, P-TTS leverages a small pool of only 90 manually selected reasoning instances and systematically varies exemplar augmentation through principled instruction prompting intensities at test time to synthesize diverse reasoning trajectory contexts. Then we finetune the various sizes of Qwen-2.5 models on P-TTS data. Across a suite of mathematical reasoning AIME2024 & 25, MATH500, and GPQA-Diamond, our P-TTS-7B and 32B models outperform the prior competitive baselines like S1 and S1.1 (1K-shot), achieving absolute accuracy gains of +26.66% and +30.00% on AIME'24 (7B), and +13.34% and +6.67% on AIME'25 (7B); P-TTS-32B yields gains of +23.33% and +16.63% on AIME'24, and +26.63% and +3.33% on AIME'25 (vs. S1 and S1.1, respectively), with comparable or better performance on MATH500 and GPQA-Diamond. We further show that P-TTS enhances zero-shot generalization accuracy on out-of-domain reasoning benchmarks of Gaokao, Kaoyan, OlympiadBench, AMC23, GradeSchoolMath, and Minerva. Our analysis suggests that test-time scaling effectively explores the latent space of reasoning patterns, amplifying LLM problem-solving with minimal annotation overhead, and further unlocking the reasoning potential and capabilities of LLMs. Prompting Test-Time Scaling offers a practical, low-cost way to elicit LLM reasoning in resource-constrained or rapidly evolving domains.
Abstract:Label scarcity remains a major challenge in deep learning-based medical image segmentation. Recent studies use strong-weak pseudo supervision to leverage unlabeled data. However, performance is often hindered by inconsistencies between pseudo labels and their corresponding unlabeled images. In this work, we propose \textbf{SynMatch}, a novel framework that sidesteps the need for improving pseudo labels by synthesizing images to match them instead. Specifically, SynMatch synthesizes images using texture and shape features extracted from the same segmentation model that generates the corresponding pseudo labels for unlabeled images. This design enables the generation of highly consistent synthesized-image-pseudo-label pairs without requiring any training parameters for image synthesis. We extensively evaluate SynMatch across diverse medical image segmentation tasks under semi-supervised learning (SSL), weakly-supervised learning (WSL), and barely-supervised learning (BSL) settings with increasingly limited annotations. The results demonstrate that SynMatch achieves superior performance, especially in the most challenging BSL setting. For example, it outperforms the recent strong-weak pseudo supervision-based method by 29.71\% and 10.05\% on the polyp segmentation task with 5\% and 10\% scribble annotations, respectively. The code will be released at https://github.com/Senyh/SynMatch.
Abstract:Medical images are usually collected from multiple domains, leading to domain shifts that impair the performance of medical image segmentation models. Domain Generalization (DG) aims to address this issue by training a robust model with strong generalizability. Recently, numerous domain randomization-based DG methods have been proposed. However, these methods suffer from the following limitations: 1) constrained efficiency of domain randomization due to their exclusive dependence on image style perturbation, and 2) neglect of the adverse effects of over-augmented images on model training. To address these issues, we propose a novel domain randomization-based DG method, called content style augmentation (ConStyX), for generalizable medical image segmentation. Specifically, ConStyX 1) augments the content and style of training data, allowing the augmented training data to better cover a wider range of data domains, and 2) leverages well-augmented features while mitigating the negative effects of over-augmented features during model training. Extensive experiments across multiple domains demonstrate that our ConStyX achieves superior generalization performance. The code is available at https://github.com/jwxsp1/ConStyX.
Abstract:Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by $2.66\%-20.34\%$, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL.