Abstract:Autonomous mobile app interaction has become increasingly important with growing complexity of mobile applications. Developing intelligent agents that can effectively navigate and interact with mobile apps remains a significant challenge. In this paper, we propose an Explainable Behavior Cloning LLM Agent (EBC-LLMAgent), a novel approach that combines large language models (LLMs) with behavior cloning by learning demonstrations to create intelligent and explainable agents for autonomous mobile app interaction. EBC-LLMAgent consists of three core modules: Demonstration Encoding, Code Generation, and UI Mapping, which work synergistically to capture user demonstrations, generate executable codes, and establish accurate correspondence between code and UI elements. We introduce the Behavior Cloning Chain Fusion technique to enhance the generalization capabilities of the agent. Extensive experiments on five popular mobile applications from diverse domains demonstrate the superior performance of EBC-LLMAgent, achieving high success rates in task completion, efficient generalization to unseen scenarios, and the generation of meaningful explanations.
Abstract:Style transfer aims to fuse the artistic representation of a style image with the structural information of a content image. Existing methods train specific networks or utilize pre-trained models to learn content and style features. However, they rely solely on textual or spatial representations that are inadequate to achieve the balance between content and style. In this work, we propose a novel and training-free approach for style transfer, combining textual embedding with spatial features and separating the injection of content or style. Specifically, we adopt the BLIP-2 encoder to extract the textual representation of the style image. We utilize the DDIM inversion technique to extract intermediate embeddings in content and style branches as spatial features. Finally, we harness the step-by-step property of diffusion models by separating the injection of content and style in the target branch, which improves the balance between content preservation and style fusion. Various experiments have demonstrated the effectiveness and robustness of our proposed DiffeseST for achieving balanced and controllable style transfer results, as well as the potential to extend to other tasks.
Abstract:Text-to-image diffusion models particularly Stable Diffusion, have revolutionized the field of computer vision. However, the synthesis quality often deteriorates when asked to generate images that faithfully represent complex prompts involving multiple attributes and objects. While previous studies suggest that blended text embeddings lead to improper attribute binding, few have explored this in depth. In this work, we critically examine the limitations of the CLIP text encoder in understanding attributes and investigate how this affects diffusion models. We discern a phenomenon of attribute bias in the text space and highlight a contextual issue in padding embeddings that entangle different concepts. We propose \textbf{Magnet}, a novel training-free approach to tackle the attribute binding problem. We introduce positive and negative binding vectors to enhance disentanglement, further with a neighbor strategy to increase accuracy. Extensive experiments show that Magnet significantly improves synthesis quality and binding accuracy with negligible computational cost, enabling the generation of unconventional and unnatural concepts.
Abstract:Position bias, i.e., users' preference of an item is affected by its placing position, is well studied in the recommender system literature. However, most existing methods ignore the widely coupled ranking bias, which is also related to the placing position of the item. Using both synthetic and industrial datasets, we first show how this widely coexisted ranking bias deteriorates the performance of the existing position bias estimation methods. To mitigate the position bias with the presence of the ranking bias, we propose a novel position bias estimation method, namely gradient interpolation, which fuses two estimation methods using a fusing weight. We further propose an adaptive method to automatically determine the optimal fusing weight. Extensive experiments on both synthetic and industrial datasets demonstrate the superior performance of the proposed methods.
Abstract:Existing Blind image Super-Resolution (BSR) methods focus on estimating either kernel or degradation information, but have long overlooked the essential content details. In this paper, we propose a novel BSR approach, Content-aware Degradation-driven Transformer (CDFormer), to capture both degradation and content representations. However, low-resolution images cannot provide enough content details, and thus we introduce a diffusion-based module $CDFormer_{diff}$ to first learn Content Degradation Prior (CDP) in both low- and high-resolution images, and then approximate the real distribution given only low-resolution information. Moreover, we apply an adaptive SR network $CDFormer_{SR}$ that effectively utilizes CDP to refine features. Compared to previous diffusion-based SR methods, we treat the diffusion model as an estimator that can overcome the limitations of expensive sampling time and excessive diversity. Experiments show that CDFormer can outperform existing methods, establishing a new state-of-the-art performance on various benchmarks under blind settings. Codes and models will be available at \href{https://github.com/I2-Multimedia-Lab/CDFormer}{https://github.com/I2-Multimedia-Lab/CDFormer}.
Abstract:In this age where data is abundant, the ability to distill meaningful insights from the sea of information is essential. Our research addresses the computational and resource inefficiencies that current Sequential Recommender Systems (SRSs) suffer from. especially those employing attention-based models like SASRec, These systems are designed for next-item recommendations in various applications, from e-commerce to social networks. However, such systems suffer from substantial computational costs and resource consumption during the inference stage. To tackle these issues, our research proposes a novel method that combines automatic pruning techniques with advanced model architectures. We also explore the potential of resource-constrained Neural Architecture Search (NAS), a technique prevalent in the realm of recommendation systems, to fine-tune models for reduced FLOPs, latency, and energy usage while retaining or even enhancing accuracy. The main contribution of our work is developing the Elastic Architecture Search for Efficient Long-term Sequential Recommender Systems (EASRec). This approach aims to find optimal compact architectures for attention-based SRSs, ensuring accuracy retention. EASRec introduces data-aware gates that leverage historical information from input data batch to improve the performance of the recommendation network. Additionally, it utilizes a dynamic resource constraint approach, which standardizes the search process and results in more appropriate architectures. The effectiveness of our methodology is validated through exhaustive experiments on three benchmark datasets, which demonstrates EASRec's superiority in SRSs. Our research set a new standard for future exploration into efficient and accurate recommender systems, signifying a substantial advancement within this swiftly advancing field.
Abstract:The application of mixture-of-experts (MoE) is gaining popularity due to its ability to improve model's performance. In an MoE structure, the gate layer plays a significant role in distinguishing and routing input features to different experts. This enables each expert to specialize in processing their corresponding sub-tasks. However, the gate's routing mechanism also gives rise to narrow vision: the individual MoE's expert fails to use more samples in learning the allocated sub-task, which in turn limits the MoE to further improve its generalization ability. To effectively address this, we propose a method called Mixture-of-Distilled-Expert (MoDE), which applies moderate mutual distillation among experts to enable each expert to pick up more features learned by other experts and gain more accurate perceptions on their original allocated sub-tasks. We conduct plenty experiments including tabular, NLP and CV datasets, which shows MoDE's effectiveness, universality and robustness. Furthermore, we develop a parallel study through innovatively constructing "expert probing", to experimentally prove why MoDE works: moderate distilling knowledge can improve each individual expert's test performances on their assigned tasks, leading to MoE's overall performance improvement.
Abstract:Finetuned large language models (such as ChatGPT and Qwen-chat) can generate Chinese classical poetry following human's instructions. LLMs perform well in content, but are usually lacking in format, with occasionally excess or insufficient number of characters in each line. Since most SOTA LLMs are token-based, we assume that the format inaccuracy is due to the difficulty of the "token planning" task, which means that the LLM need to know exactly how much characters are contained in each token and do length-control planning based on that knowledge. In this paper, we first confirm our assumption by showing that existing token-based large language models has limited knowledge on token-character relationship. We use a spelling bee probing procedure, and find that Qwen-chat failed in nearly 15% Chinese spelling test. We then show that a token-based model can be easily tailored into a token-free model (in terms of Chinese), which can largely solve the format accuracy problem. Our tailoring procedure removes long-tokens from the vocabulary and the language model head, and keeps only character-level or byte-level tokens. As part of our contribution, we release the finetuned token-free model (which is based on Qwen-chat-7B), which can generate chinese classical poetry following complex instructions like LLMs (such as story paraphrasing), and also perform well in format. On the test set, our token-free model achives an format accuracy of 0.96, compared to 0.84 for token-based equivalents and 0.38 for GPT-4.
Abstract:As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named \textit{lookahead}, introduces a \textit{multi-branch} strategy. Instead of generating a single token at a time, we propose a \textit{Trie-based Retrieval} (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a \textit{Verification and Accept} (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: https://github.com/alipay/PainlessInferenceAcceleration.
Abstract:Given the enormous number of users and items, industrial cascade recommendation systems (RS) are continuously expanded in size and complexity to deliver relevant items, such as news, services, and commodities, to the appropriate users. In a real-world scenario with hundreds of thousands requests per second, significant computation is required to infer personalized results for each request, resulting in a massive energy consumption and carbon emission that raises concern. This paper proposes GreenFlow, a practical computation allocation framework for RS, that considers both accuracy and carbon emission during inference. For each stage (e.g., recall, pre-ranking, ranking, etc.) of a cascade RS, when a user triggers a request, we define two actions that determine the computation: (1) the trained instances of models with different computational complexity; and (2) the number of items to be inferred in the stage. We refer to the combinations of actions in all stages as action chains. A reward score is estimated for each action chain, followed by dynamic primal-dual optimization considering both the reward and computation budget. Extensive experiments verify the effectiveness of the framework, reducing computation consumption by 41% in an industrial mobile application while maintaining commercial revenue. Moreover, the proposed framework saves approximately 5000kWh of electricity and reduces 3 tons of carbon emissions per day.